NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Pulmonary Toxicity Studies of Lunar Dusts in RodentsNASA will build an outpost on the lunar surface for long-duration human habitation and research. The surface of the Moon is covered by a layer of fine, reactive dust, and the living quarters in the lunar outpost are expected to be contaminated by lunar dust. NASA established the Lunar Airborne Dust Toxicity Advisory Group (LADTAG) to evaluate the risk of exposure to the dust and to establish safe exposure limits for astronauts working in the lunar habitat. Because the toxicity of lunar dust is not known, LADTAG has recommended investigating its toxicity in the lungs of laboratory animals. After receiving this recommendation, NASA directed the JSC Toxicology Laboratory to determine the pulmonary toxicity of lunar dust in exposed rodents. The rodent pulmonary toxicity studies proposed here are the same as those proposed by the LADTAG. Studies of the pulmonary toxicity of a dust are generally done first in rodents by intratracheal instillation (ITI). This toxicity screening test is then followed by an inhalation study, which requires much more of the test dust and is labor intensive. We succeeded in completing an ITI study on JSC-1 lunar dust simulant in mice (Lam et al., Inhalation Toxicology 14:901-916, 2002, and Inhalation Toxicology 14: 917-928, 2002), and have conducted a pilot ITI study to examine the acute toxicity of an Apollo lunar (highland) dust sample. Preliminary results obtained by examining lung lavage fluid from dust-treated mice show that lunar dust was somewhat toxic (more toxic than TiO2, but less than quartz dust). More extensive studies have been planned to further examine lung lavage fluid for biomarkers of toxicity and lung tissues for histopathological lesions in rodents exposed to aged and activated lunar dust samples. In these studies, reference dusts (TiO2 and quartz) of known toxicities and have industrial exposure limits will be studied in parallel so the relative toxicity of lunar dust can be determined. The ITI results will also be useful for choosing an exposure concentration for the animal inhalation study on a selected lunar dust sample, which is included as a part of this proposal. The animal inhalation exposure will be conducted with lunar dust simulant prior to the study with the lunar dust. The simulant exposure will ensure that the study techniques used with actual lunar dust will be successful. The results of ITI and inhalation studies will reveal the toxicological risk of exposures and are essential for setting exposure limits on lunar dust for astronauts living in the lunar habitat.
Document ID
20080010662
Acquisition Source
Johnson Space Center
Document Type
Conference Paper
Authors
Lam, Chiu-wing
(NASA Johnson Space Center Houston, TX, United States)
James, John T.
(NASA Johnson Space Center Houston, TX, United States)
Taylor, Larry
(Tennessee Univ. TN, United States)
Date Acquired
August 24, 2013
Publication Date
February 4, 2008
Subject Category
Life Sciences (General)
Meeting Information
Meeting: Human Research Program Investigators'' Workshop
Location: League City, TX
Country: United States
Start Date: February 4, 2008
End Date: February 6, 2008
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available