NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Long-term Evolution of Upper Stratospheric Ozone at Selected Stations of the Network for the Detection of Stratospheric Change (NDSC)The long-term evolution of upper stratospheric ozone has been recorded by lidars and microwave radiometers within the ground-based Network for the Detection of Stratospheric Change (NDSC), and by the space-borne Solar Backscatter Ultra-Violet instruments (SBUV), Stratospheric Aerosol and Gas Experiment (SAGE), and Halogen Occultation Experiment (HALOE). Climatological mean differences between these instruments are typically smaller than 5% between 25 and 50 km. Ozone anomaly time series from all instruments, averaged from 35 to 45 km altitude, track each other very well and typically agree within 3 to 5%. SBUV seems to have a slight positive drift against the other instruments. The corresponding 1979 to 1999 period from a transient simulation by the fully coupled MAECHAM4-CHEM chemistry climate model reproduces many features of the observed anomalies. However, in the upper stratosphere the model shows too low ozone values and too negative ozone trends, probably due to an underestimation of methane and a consequent overestimation of ClO. The combination of all observational data sets provides a very consistent picture, with a long-term stability of 2% or better. Upper stratospheric ozone shows three main features: (1) a decline by 10 to 15% since 1980, due to chemical destruction by chlorine; (2) two to three year fluctuations by 5 to 10%, due to the Quasi-Biennial Oscillation (QBO); (3) an 11-year oscillation by about 5%, due to the 11-year solar cycle. The 1979 to 1997 ozone trends are larger at the southern mid-latitude station Lauder (45 S), reaching 8%/decade, compared to only about 6%/decade at Table Mountain (35 N), Haute Provence/Bordeaux (approximately equal to 45 N), and Hohenpeissenberg/Bern(approximately equal to 47 N). At Lauder, Hawaii (20 N), Table Mountain, and Haute Provence, ozone residuals after subtraction of QBO- and solar cycle effects have levelled off in recent years, or are even increasing. Assuming a turning point in January 1997, the change of trend is largest at southern mid-latitude Lauder, +11%/decade, compared to +7%/decade at northern mid-latitudes. This points to a beginning recovery of upper stratospheric ozone. However, chlorine levels are still very high and ozone will remain vulnerable. At this point the most northerly mid-latitude station, Hohenpeissenberg/Bern differs from the other stations, and shows much less clear evidence for a beginning recovery, with a change of trend in 1997 by only +3%/decade. In fact, record low upper stratospheric ozone values were observed at Hohenpeissenberg/Bern, and to a lesser degree at Table Mountain and Haute Provence, in the winters 2003/2004 and 2004/2005.
Document ID
20080015989
Acquisition Source
Langley Research Center
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Steinbrecht, W.
(Deutscher Wetterdienst Hohenpeissenberg , Germany)
Claude, H.
(Deutscher Wetterdienst Hohenpeissenberg , Germany)
Schoenenborn, F.
(Deutscher Wetterdienst Hohenpeissenberg , Germany)
McDermid, I. S.
(Jet Propulsion Lab., California Inst. of Tech. Wrightwood, CA, United States)
LeBlanc, T.
(Jet Propulsion Lab., California Inst. of Tech. Wrightwood, CA, United States)
Godin, S.
(Centre National de la Recherche Scientifique Paris, France)
Swart, D. P. J.
(Rijksinstituut voor de Volksgezondheid Bilthoven, Netherlands)
Meijer, Y. J.
(Rijksinstituut voor de Volksgezondheid Bilthoven, Netherlands)
Bodecker, G. E.
(National Inst. of Water and Atmospheric Research New Zealand)
Connor, B. J.
(National Inst. of Water and Atmospheric Research New Zealand)
Kaempfer, N.
(Bern Univ. Bern, Switzerland)
Hocke, K.
(Bern Univ. Bern, Switzerland)
Calisesi, Y.
(Bern Univ. Bern, Switzerland)
delaNoee
(Bordeaux Univ. France)
Parrish, A. D.
(Massachusetts Univ. Amherst, MA, United States)
Boyd, I. S.
Bruehl, C.
(Max-Planck-Inst. fuer Chemie Mainz, Germany)
Steil, B.
(Max-Planck-Inst. fuer Chemie Mainz, Germany)
Manzini, E.
(Max-Planck-Inst. fuer Meteorologie Hamburg, Germany)
Thomason, L. W.
(NASA Langley Research Center Hampton, VA, United States)
Zawodny, J. M.
(NASA Langley Research Center Hampton, VA, United States)
McCormick, M. P.
(Hampton Univ. VA, United States)
Russell, J. M., III
(Hampton Univ. VA, United States)
Bhartia, P. K.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Stolarski, R. S.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 24, 2013
Publication Date
May 1, 2006
Subject Category
Meteorology And Climatology
Funding Number(s)
CONTRACT_GRANT: AFO-2000 07ATF43/44
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available