NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Climate Model Evaluation using New Datasets from the Clouds and the Earth's Radiant Energy System (CERES)There are some in the science community who believe that the response of the climate system to anthropogenic radiative forcing is unpredictable and we should therefore call off the quest . The key limitation in climate predictability is associated with cloud feedback. Narrowing the uncertainty in cloud feedback (and therefore climate sensitivity) requires optimal use of the best available observations to evaluate and improve climate model processes and constrain climate model simulations over longer time scales. The Clouds and the Earth s Radiant Energy System (CERES) is a satellite-based program that provides global cloud, aerosol and radiative flux observations for improving our understanding of cloud-aerosol-radiation feedbacks in the Earth s climate system. CERES is the successor to the Earth Radiation Budget Experiment (ERBE), which has widely been used to evaluate climate models both at short time scales (e.g., process studies) and at decadal time scales. A CERES instrument flew on the TRMM satellite and captured the dramatic 1998 El Nino, and four other CERES instruments are currently flying aboard the Terra and Aqua platforms. Plans are underway to fly the remaining copy of CERES on the upcoming NPP spacecraft (mid-2010 launch date). Every aspect of CERES represents a significant improvement over ERBE. While both CERES and ERBE measure broadband radiation, CERES calibration is a factor of 2 better than ERBE. In order to improve the characterization of clouds and aerosols within a CERES footprint, we use coincident higher-resolution imager observations (VIRS, MODIS or VIIRS) to provide a consistent cloud-aerosol-radiation dataset at climate accuracy. Improved radiative fluxes are obtained by using new CERES-derived Angular Distribution Models (ADMs) for converting measured radiances to fluxes. CERES radiative fluxes are a factor of 2 more accurate than ERBE overall, but the improvement by cloud type and at high latitudes can be as high as a factor of 5. Diurnal cycles are explicitly resolved by merging geostationary satellite observations with CERES and MODIS. Atmospheric state data are provided from a frozen version of the Global Modeling and Assimilation Office- Data Assimilation System at the NASA Goddard Space Flight Center. In addition to improving the accuracy of top-of-atmosphere (TOA) radiative fluxes, CERES also produces radiative fluxes at the surface and at several levels in the atmosphere using radiative transfer modeling, constrained at the TOA by CERES (ERBE was limited to the TOA). In all, CERES uses 11 instruments on 7 spacecraft all integrated to obtain climate accuracy in TOA to surface fluxes. This presentation will provide an overview of several new CERES datasets of interest to the climate community (including a new adjusted TOA flux dataset constrained by estimates of heat storage in the Earth system), show direct comparisons between CERES ad ERBE, and provide a detailed error analysis of CERES fluxes at various time and space scales. We discuss how observations can be used to reduce uncertainties in cloud feedback and climate sensitivity and strongly argue why we should NOT "call off the quest".
Document ID
20080022971
Document Type
Conference Paper
Authors
Loeb, Norman G. (NASA Langley Research Center Hampton, VA, United States)
Wielicki, Bruce A. (NASA Langley Research Center Hampton, VA, United States)
Doelling, David R. (NASA Langley Research Center Hampton, VA, United States)
Date Acquired
August 24, 2013
Publication Date
June 2, 2008
Subject Category
Meteorology and Climatology
Meeting Information
4th Pan-GCSS Meeting(Toulouse)
Funding Number(s)
WBS: WBS 921266.04.07.07
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.