NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
On Combining Thermal-Infrared and Radio-Occultation Data of Saturn's AtmosphereRadio-occultation and thermal-infrared measurements are complementary investigations for sounding planetary atmospheres. The vertical resolution afforded by radio occultations is typically approximately 1 km or better, whereas that from infrared sounding is often comparable to a scale height. On the other hand, an instrument like CIRS can easily generate global maps of temperature and composition, whereas occultation soundings are usually distributed more sparsely. The starting point for radio-occultation inversions is determining the residual Doppler-shifted frequency, that is the shift in frequency from what it would be in the absence of the atmosphere. Hence the positions and relative velocities of the spacecraft, target atmosphere, and DSN receiving station must be known to high accuracy. It is not surprising that the inversions can be susceptible to sources of systematic errors. Stratospheric temperature profiles on Titan retrieved from Cassini radio occultations were found to be very susceptible to errors in the reconstructed spacecraft velocities (approximately equal to 1 mm/s). Here the ability to adjust the spacecraft ephemeris so that the profiles matched those retrieved from CIRS limb sounding proved to be critical in mitigating this error. A similar procedure can be used for Saturn, although the sensitivity of its retrieved profiles to this type of error seems to be smaller. One issue that has appeared in inverting the Cassini occultations by Saturn is the uncertainty in its equatorial bulge, that is, the shape in its iso-density surfaces at low latitudes. Typically one approximates that surface as a geopotential surface by assuming a barotropic atmosphere. However, the recent controversy in the equatorial winds, i.e., whether they changed between the Voyager (1981) era and later (after 1996) epochs of Cassini and some Hubble observations, has made it difficult to know the exact shape of the surface, and it leads to uncertainties in the retrieved temperature profiles of one to a few kelvins. This propagates into errors in the retrieved helium abundance, which makes use of thermal-infrared spectra and synthetic spectra computed with retrieved radio-occultation temperature profiles. The highest abundances are retrieved with the faster Voyager-era winds, but even these abundances are somewhat smaller than those retrieved from the thermal-infrared data alone (albeit with larger formal errors). The helium abundance determination is most sensitive to temperatures in the upper troposphere. Further progress may include matching the radio-occultation profiles with those from CIRS limb sounding in the upper stratosphere.
Document ID
20080024229
Acquisition Source
Goddard Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Flasar, F. M.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Schinder, P. J.
(Cornell Univ. United States)
Conrath, B. J.
(Cornell Univ. United States)
Date Acquired
August 24, 2013
Publication Date
January 1, 2008
Subject Category
Lunar And Planetary Science And Exploration
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available