NTRS - NASA Technical Reports Server

Back to Results
Adaptive Changes In Postural Equilibrium And Motion Sickness Following Repeated Exposures To Virtual EnvironmentsVirtual environments offer unique training opportunities, particularly for training astronauts and preadapting them to the novel sensory conditions of microgravity. Two unresolved human factors issues in virtual reality (VR) systems are: 1) potential "cybersickness", and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Changes in the environmental sensory stimulus conditions and the way we interact with the new stimuli may result in motion sickness, and perceptual, spatial orientation and sensorimotor disturbances. Initial interpretation of novel sensory information may be inappropriate and result in perceptual errors. Active exploratory behavior in a new environment, with resulting feedback and the formation of new associations between sensory inputs and response outputs, promotes appropriate perception and motor control in the new environment. Thus, people adapt to consistent, sustained alterations of sensory input such as those produced by microgravity, unilateral labyrinthectomy and experimentally produced stimulus rearrangements. Adaptation is revealed by aftereffects including perceptual disturbances and sensorimotor control disturbances. The purpose of the current study was to compare disturbances in postural control produced by dome and head-mounted virtual environment displays, and to examine the effects of exposure duration, and repeated exposures to VR systems. Forty-one subjects (21 men, 20 women) participated in the study with an age range of 21-49 years old. One training session was completed in order to achieve stable performance on the posture and VR tasks before participating in the experimental sessions. Three experimental sessions were performed each separated by one day. The subjects performed a navigation and pick and place task in either a dome or head-mounted display (HMD) VR system for either 30 or 60 min. The environment was a square room with 15 pedestals on two opposite walls. The objects appeared on one set of pedestals and the subject s objective was to move the objects to the other set of pedestals. After the subject picked up an object, a pathway appeared and they were required to follow the pathway to the other side of the room. The subject was instructed to perform the task as quickly and accurately as possible, avoiding hitting walls and other any obstacles and placing the object on the center of the pedestal. Postural equilibrium was measured (using the Equitest CDP balance system, Neurocom, International) before, immediately after, and at 1 hr, 2 hr, 4 hr and 6 hr following exposure to VR. Postural equilibrium was measured during quiet stance with eyes open, eyes closed and vision and/or ankle proprioceptive inputs selectively altered by servo-controlling the visual surround and/or support surface to the subject s center of mass sway. Posture data was normalized using a log transformation and motion sickness data were normalized using the square root. In general, we found that exposure to VR resulted in decrements in postural stability. The largest decrements were observed in the tests performed immediately following exposure to VR and showed a fairly rapid recovery across the remaining test sessions. In addition, subjects generally showed improvement across days. We found significant main effects for day and time for the composite equilibrium score and for sensory organization tests (SOT) 1, 2 and 6. Significant main effects were observed for day for SOT 3 and 5. Although we found no significant main effects for gender (when center of gravity was used as a covariate), we did observe significant gender X time interaction effects for composite equilibrium and for SOT 1, 3, 4 and 5. Women appeared to show larger decrements in postural stability immediately after exposure to VR than men, but recover more quickly than n. Finally, we found no significant main effects for type of VR device or for exposure duration, however, these factors did interact with other factors during some of the SOTs. Subjects exhibited rapid recovery of motion sickness symptoms across time following exposure to VR and significantly less severe symptoms across days. We did not observe main effects for gender, type of device or duration of exposure. Individuals recovered from the detrimental effects of exposure to virtual reality on postural control and motion sickness within one hour. Sickness severity and initial decrements in postural equilibrium decreases over days, which suggests that subjects become dual-adapted over time. These findings provide some direction for developing training schedules for VR users that facilitate adaptation, and support the idea that preflight training of astronauts may serve as useful countermeasure for the sensorimotor effects of space flight.
Document ID
Document Type
Conference Paper
Harm, D. L. (NASA Johnson Space Center Houston, TX, United States)
Taylor, L. C. (Wyle Labs., Inc. Houston, TX, United States)
Date Acquired
August 24, 2013
Publication Date
June 11, 2006
Subject Category
Aerospace Medicine
Meeting Information
Seventh Symposium on the Role of the Vestibular Organs in Space Exploration(Noordwijk)
Distribution Limits
Work of the US Gov. Public Use Permitted.