NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Energy Deposition Processes in Titan's Upper AtmosphereMost of Titan's atmospheric organic and nitrogen chemistry, aerosol formation, and atmospheric loss are driven from external energy sources such as Solar UV, Saturn's magnetosphere, solar wind and galactic cosmic rays. The Solar UV tends to dominate the energy input at lower altitudes of approximately 1100 km but which can extend down to approximately 400 km, while the plasma interaction from Saturn's magnetosphere, Saturn's magnetosheath or solar wind are more important at higher altitudes of approximately 1400 km, but the heavy ion plasma [O(+)] of approximately 2 keV and energetic ions [H(+)] of approximately 30 keV or higher from Saturn's magnetosphere can penetrate below 950km. Cosmic rays with energies of greater than 1 GeV can penetrate much deeper into Titan's atmosphere with most of its energy deposited at approximately 100 km altitude. The haze layer tends to dominate between 100 km and 300 km. The induced magnetic field from Titan's interaction with the external plasma can be very complex and will tend to channel the flow of energy into Titan's upper atmosphere. Cassini observations combined with advanced hybrid simulations of the plasma interaction with Titan's upper atmosphere show significant changes in the character of the interaction with Saturn local time at Titan's orbit where the magnetosphere displays large and systematic changes with local time. The external solar wind can also drive sub-storms within the magnetosphere which can then modify the magnetospheric interaction with Titan. Another important parameter is solar zenith angle (SZA) with respect to the co-rotation direction of the magnetospheric flow. Titan's interaction can contribute to atmospheric loss via pickup ion loss, scavenging of Titan's ionospheric plasma, loss of ionospheric plasma down its induced magnetotail via an ionospheric wind, and non-thermal loss of the atmosphere via heating and sputtering induced by the bombardment of magnetospheric keV ions and electrons. This energy input evidently drives the large positive and negative ions observed below approximately 1100 km altitude with ion masses exceeding 10,000 daltons. We refer to these ions as seed particles for the aerosols observed below 300 km altitude. These seed particles can be formed, for example, from the polymerization of acetylene (C2H2) and benzene (C6H6) molecules in Titan's upper atmosphere to form polycyclic aromatic hydrocarbons (PAH) and/or fullerenes (C60). In the case of fullerenes, which are hollow spherical carbon shells, magnetospheric keV [O(+)] ions can become trapped inside the fullerenes and eventually find themselves inside the aerosols as free oxygen. The aerosols are then expected to fall to Titan's surface as polymerized hydrocarbons with trapped free oxygen where unknown surface chemistry can take place.
Document ID
20080030142
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Sittler, Edward C., Jr.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Bertucci, Cesar
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Coates, Andrew
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Cravens, Tom
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Dandouras, Iannis
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Shemansky, Don
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 24, 2013
Publication Date
July 7, 2008
Subject Category
Lunar And Planetary Science And Exploration
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available