NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Current State of Modeling the Photochemistry of Titan's Mutually Dependent Atmosphere and IonosphereIn the context of recent observations, microphysical models, and laboratory data, a photochemical model of Titan's atmosphere, including updated chemistry focusing on rate coefficients and cross sections measured under appropriate conditions, has been developed to increase understanding of these processes and improve upon previous Titan photochemical models. The model employs a two-stream discrete ordinates method to characterize the transfer of solar radiation, and the effects of electron-impact, cosmic-ray deposition, and aerosol opacities from fractal and Mie particles are analyzed. Sensitivity studies demonstrate that an eddy diffusion profile with a homopause level of 850 km and a methane stratospheric mole fraction of 2.2% provides the best fit of stratospheric and upper atmosphere observations and an improved fit over previous Titan photochemical models. Lack of fits for C3H8, HC3N, and possibly C2H3CN can be resolved with adjustments in aerosol opacity. The model presents a benzene profile consistent with its detection in Titan's stratosphere [Coustenis et al., 2003], which may play an important role in the formation of Titan hazes. An electron peak concentration of 4200 cm(exp -3) is calculated, which exceeds observations by 20%, considerably lower than previous ionosphere models. With adjustments in aerosol opacities and surface fluxes the model illustrates that reasonable fits to existing observations are possible with a single eddy diffusion profile, contrary to the conclusions of previous Titan models. These results will aid in the receipt and interpretation of data from Cassini-Huygens, which will arrive at Titan in 2004 and deploy a probe into Titan's atmosphere in January 2005.
Document ID
20080032490
Acquisition Source
Jet Propulsion Laboratory
Document Type
Reprint (Version printed in journal)
Authors
Wilson, Eric H.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Atreya, S. K.
(Michigan Univ. Ann Arbor, MI, United States)
Date Acquired
August 24, 2013
Publication Date
June 4, 2004
Publication Information
Publication: Journal of Geophysical Research
Publisher: American Geophysical Union
Volume: 109
Subject Category
Lunar And Planetary Science And Exploration
Distribution Limits
Public
Copyright
Other
Keywords
ion chemistry
haze
composition
photochemistry
Titan
planetary atmospheres

Available Downloads

There are no available downloads for this record.
No Preview Available