NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Flora: A Proposed Hyperspectral MissionIn early 2004, one of the authors (Stephen Ungar, NASA GSFC) presented a mission concept called "Spectrasat" at the AVIRIS Workshop in Pasadena, CA. This mission concept grew out of the lessons learned from the Earth Observing-One (EO-1) Hyperion Imaging Spectrometer and was structured to more effectively accomplish the types of studies conducted with Hyperion. The Spectrasat concept represented an evolution of the technologies and operation strategies employed on EO-I. The Spectrasat concept had been preceded by two community-based missions proposed by Susan Ustin, UC Davis and Robert Green, NASA JPL. As a result of community participation, starting at this AVIRIS Workshop, the Spectrasat proposal evolved into the Flora concept which now represents the combined visions of Gregory Asner (Carnegie Institute), Stephen Ungar, Robert Green and Robert Knox, NASA GSFC. Flora is a proposed imaging spectrometer mission, designed to address global carbon cycle science issues. This mission centers on measuring ecological disturbance for purposes of ascertaining changes in global carbon stocks and draws heavily on experience gained through AVIRIS airborne flights and Hyperion space born flights. The observing strategy exploits the improved ability of imaging spectrometers, as compared with multi-spectral observing systems, to identify vegetation functional groups, detect ecosystem response to disturbance and assess the related discovery. Flora will be placed in a sun synchronous orbit, with a 45 meter pixel size, a 90 km swath width and a 31 day repeat cycle. It covers the spectral range from 0.4 to 2.5 micrometers with a spectral sampling interval of 10 nm. These specifications meet the needs of the Flora science team under the leadership of Gregory Asner. Robert Green, has introduced a spectrometer design for Flora which is expected to have a SNR of 600: 1 in the VNIR and 450: 1 in the SWIR. The mission team at NASA GSFC is designing an Intelligent Payload Module (IPM) designed to effectively reduce the volume of data required to be transmitted down to the ground. This paper discusses mission science objectives, describes the mission concept and presents the current status of possible funding opportunities leading to realization of the mission.
Document ID
20080045452
Document Type
Conference Paper
Authors
Ungar, Stephen (NASA Goddard Space Flight Center Greenbelt, MD, United States)
Asner, Gregory (Carnegie Institution of Washington United States)
Green, Robert (Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Knox, Robert (NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 24, 2013
Publication Date
July 31, 2006
Subject Category
Space Sciences (General)
Meeting Information
International Geoscience and Remote Sensing Symposium (IGARSS-2006)(Denver, Co)
Distribution Limits
Public
Copyright
Other