NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Stellar Imager - Observing the Universe in High DefinitionStellar Imager (SI) is a space-based, UV Optical Interferometer (UVOI) with over 200x the resolution of HST. It will enable 0.1 milli-arcsec spectral imaging of stellar surfaces and the Universe in general and open an enormous new 'discovery space' for Astrophysics with its combination of high angular resolution, dynamic imaging, and spectral energy resolution. SI's goal is to study the role of magnetism in the Universe and revolutionize our understanding of: 1) Solar/Stellar Magnetic Activity and their impact on Space Weather, Planetary Climates. and Life, 2) Magnetic and Accretion Processes and their roles in the Origin and Evolution of Structure and in the Transport of Matter throughout the Universe, 3) the close-in structure of Active Galactic Nuclei and their winds, and 4) Exo-Solar Planet Transits and Disks. The SI mission is targeted for the mid 2020's - thus significant technology development in the upcoming decade is critical to enabling it and future spacebased sparse aperture telescope and distributed spacecraft missions. The key technology needs include: 1) precision formation flying of many spacecraft, 2) precision metrology over km-scales, 3) closed-loop control of many-element, sparse optical arrays, 4) staged-control systems with very high dynamic ranges (nm to km-scale). It is critical that the importance of timely development of these capabilities is called out in the upcoming Astrophysics and Heliophysics Decadal Surveys, to enable the flight of such missions in the following decade. S1 is a 'Landmark/Discovery Mission' in 2005 Heliophysics Roadmap and a candidate UVOI in the 2006 Astrophysics Strategic Plan. It is a NASA Vision Mission ('NASA Space Science Vision Missions' (2008), ed. M. Allen) and has also been recommended for further study in the 2008 NRC interim report on missions potentially enabled enhanced by an Ares V' launch, although a incrementally-deployed version could be launched using smaller rockets.
Document ID
20080047685
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Carpenter, Kenneth
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 24, 2013
Publication Date
January 1, 2009
Subject Category
Astrophysics
Meeting Information
Meeting: 2008 International Year of Astronomy
Location: Long Beach, CA
Country: United States
Start Date: January 4, 2009
End Date: January 8, 2009
Sponsors: American Astronomical Society
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available