NASA Logo, External Link
Facebook icon, External Link to NASA STI page on Facebook Twitter icon, External Link to NASA STI on Twitter YouTube icon, External Link to NASA STI Channel on YouTube RSS icon, External Link to New NASA STI RSS Feed AddThis share icon
 

Record Details

Record 3 of 230
Calculational and Experimental Investigations of the Pressure Effects on Radical - Radical Cross Combinations Reactions: C2H5 + C2H3
External Online Source: doi:10.1021/jp067357v
Author and Affiliation:
Fahr, Askar(Howard Univ., Dept. of Chemistry, Washington, DC, United States)
Halpern, Joshua B.(Howard Univ., Dept. of Chemistry, Washington, DC, United States)
Tardy, Dwight C.(Iowa Univ., Dept. of Chemistry, Iowa City, IA, United States)
Abstract: Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5 + C2H3 yields 1-butene, (2c) C2H5 + C2H5 yields n-butane, and (3c) C2H3 + C2H3 yields 1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [ 1-C4H8]/[C4H10] ratio was reduced from approx.1.2 at 760 Torr (101 kPa) to approx.0.5 at 100 Torr (13.3 kPa) and approx.0.1 at pressures lower than about 5 Torr (approx.0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance of C-C and C-H bond ruptures, cyclization, decyclization, and complex decompositions are discussed in terms of energetics and structural properties. The pressure dependence of the product yields were computed and dominant reaction paths in this chemically activated system were determined. Both modeling and experiment suggest that the observed pressure dependence of [1-C4H8]/[C4H10] is due to decomposition of the chemically activated combination adduct 1-C4H8* in which the weaker allylic C-C bond is broken: H2C=CHCH2CH3 yields C3H5 + CH3. This reaction occurs even at moderate pressures of approx.200 Torr (26 kPa) and becomes more significant at lower pressures. The additional products detected at lower pressures are formed from secondary radical-radical reactions involving allyl, methyl, ethyl, and vinyl radicals. The modeling studies have extended the predictions of product distributions to different temperatures (200-700 K) and a wider range of pressures (10(exp -3) - 10(exp 5) Torr). These calculations indicate that the high-pressure [1-C4H8]/[C4H10] yield ratio is 1.3 +/- 0.1.
Publication Date: Jun 22, 2007
Document ID:
20090002595
(Acquired Jan 14, 2009)
Subject Category: CHEMISTRY AND MATERIALS (GENERAL)
Document Type: Journal Article
Publication Information: The Journal of Physical Chemistry A; Volume 111; No. 29; 6600-6609
Publisher Information: American Chemical Society, Washington, DC, United States
Contract/Grant/Task Num: NNG05GQ15G
Financial Sponsor: NASA Goddard Space Flight Center; Greenbelt, MD, United States
Organization Source: Howard Univ.; Dept. of Chemistry; Washington, DC, United States
Description: 7p; In English; Original contains black and white illustrations
Distribution Limits: Unclassified; Publicly available; Unlimited
Rights: Copyright
NASA Terms: CYCLIC HYDROCARBONS; BUTADIENE; BUTANES; ETHYL COMPOUNDS; MASS SPECTROSCOPY; METHYL COMPOUNDS; PRESSURE EFFECTS; REACTION KINETICS; REACTION PRODUCTS; VINYL RADICAL; COLLISIONS; DECOMPOSITION; EXCIMER LASERS
Availability Source: Other Sources
› Back to Top
Find Similar Records
NASA Logo, External Link
NASA Official: Gerald Steeman
Site Curator: STI Program
Last Modified: August 24, 2011
Contact Us