NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Improving Coastal Ocean Color Validation Capabilities through Application of Inherent Optical Properties (IOPs)Understanding how the different components of seawater alter the path of incident sunlight through scattering and absorption is essential to using remotely sensed ocean color observations effectively. This is particularly apropos in coastal waters where the different optically significant components (phytoplankton, detrital material, inorganic minerals, etc.) vary widely in concentration, often independently from one another. Inherent Optical Properties (IOPs) form the link between these biogeochemical constituents and the Apparent Optical Properties (AOPs). understanding this interrelationship is at the heart of successfully carrying out inversions of satellite-measured radiance to biogeochemical properties. While sufficient covariation of seawater constituents in case I waters typically allows empirical algorithms connecting AOPs and biogeochemical parameters to behave well, these empirical algorithms normally do not hold for case I1 regimes (Carder et al. 2003). Validation in the context of ocean color remote sensing refers to in-situ measurements used to verify or characterize algorithm products or any assumption used as input to an algorithm. In this project, validation capabilities are considered those measurement capabilities, techniques, methods, models, etc. that allow effective validation. Enhancing current validation capabilities by incorporating state-of-the-art IOP measurements and optical models is the purpose of this work. Involved in this pursuit is improving core IOP measurement capabilities (spectral, angular, spatio-temporal resolutions), improving our understanding of the behavior of analytical AOP-IOP approximations in complex coastal waters, and improving the spatial and temporal resolution of biogeochemical data for validation by applying biogeochemical-IOP inversion models so that these parameters can be computed from real-time IOP sensors with high sampling rates. Research cruises supported by this project provides for collection and processing of seawater samples for biogeochemical (pigments, DOC and POC) and optical (CDOM and POM absorption coefficients) analyses to enhance our understanding of the linkages between in-water optical measurements (IOPs and AOPs) and biogeochemical constituents and to provide a more comprehensive suite of validation products.
Document ID
20090005245
Document Type
Other
Authors
Mannino, Antonio (NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 24, 2013
Publication Date
September 1, 2008
Subject Category
Optics
Funding Number(s)
CONTRACT_GRANT: NNX06AH32G
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.