NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
F15B-Quiet Spike Aeroservoelastic Flight Test Data AnalysisAirframe structural morphing technologies designed to mitigate sonic boom strength are being developed by Gulfstream Aerospace Corporation (GAC). Among these technologies is a concept in which an aircraft's frontend would be extended prior to supersonic acceleration. This morphing would effectively lengthen the vehicle, reducing peak sonic boom amplitude, but is also expected to partition the otherwise strong bow shock into a series of reduced-strength, non-coalescing shocklets. This combination of boom shaping techniques is predicted to transform the classic, high-impulse N-wave pattern typically generated by an aircraft traveling at supersonic speed into a signature more closely resembling a sinusoidal wave with a greatly reduced perceived loudness. 'QuietSpike' is GAC's nomenclature for its recently patented front-end vehicle morphing arrangement. The ability of Quiet Spike to effectively shape a vehicle's far- field sonic boom signature is highly dependent on the area distribution characteristics of the aircraft. The full aeroacoustic benefits of front-end morphing at farfield are only possible when the QuietSpike article and vehicle configuration are designed in consideration of each other. Adding QuietSpike technology to the airframe of an existing, non-boom-optimized supersonic vehicle is unlikely to result in an improved far-field signature due to the generally over-powering influence of wing- and inlet-generated shocks. Therefore, it is generally recognized within NASA and the industry that a clean-sheet vehicle design is required to demonstrate the theoretically predicted far-field aeroacoustic benefits of QuietSpike type morphing and other boom- mitigating concepts. NASA's Aeronautics Research Mission Directorate (ARMD) Supersonics Division has placed increased priority on near-term development and flight-testing of such a vehicle. To help achieve this objective, static and dynamic aerostructural proof-of-concept testing was considered a prudent step prior to a clean-sheet effort in order to reduce risk associated with a follow-on test program. Following a survey of potential test platforms, NASA Dryden's F-15B was selected as the target test vehicle primarily because of its unique ability to carry a largescale test apparatus to relevant supersonic flight speeds, so called the F15 -QS. The QuietSpike test article was constructed primarily of composite materials and attached to the forward fuselage of the F-1 5B bulkhead (see Figures 1,2). The QuietSpike test article replaces the current flight test noseboom and radome assembly. Power is supplied to the Quiet Spike motor assembly in order to extend and retract the Spike, and the Quiet Spike test article was appropriately instrumented with accelerometers, strain gages, pressure transducers, and thermocouples.
Document ID
20090009351
Acquisition Source
Armstrong Flight Research Center
Document Type
Conference Paper
Authors
Brenner, Martin J.
(NASA Dryden Flight Research Center Edwards, CA, United States)
Date Acquired
August 24, 2013
Publication Date
April 23, 2007
Subject Category
Aircraft Design, Testing And Performance
Report/Patent Number
DFRC-571
Meeting Information
Meeting: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference
Location: Waikiki, HI
Country: United States
Start Date: April 23, 2007
End Date: April 26, 2007
Sponsors: American Inst. of Aeronautics and Astronautics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available