NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The CME Flare Arcade and the Width of the CME in the Outer CoronaMoore, Sterling, & Suess (2007, ApJ, 668, 1221) present evidence that (1) a CME is typically a magnetic bubble, a low-beta gplasmoid with legs h having roughly the 3D shape of a light bulb, and (2) in the outer corona the CME plasmoid is in lateral pressure equilibrium with the ambient magnetic field. They present three CMEs observed by SOHO/LASCO, each from a very different source located near the limb. One of these CMEs came from a compact ejective eruption from a small part of a sunspot active region, another came from a large quiet-region filament eruption, and the third CME, an extremely large and fast one, was produced in tandem with an X20 flare arcade that was centered on a huge delta sunspot. Each of these CMEs had more or less the classic lightbulb silhouette and attained a constant heliocentric angular width in the outer corona. This indicates that the CME plasmoid attained lateral magnetic pressure balance with the ambient radial magnetic field in the outer corona. This lateral pressure balance, together with the standard scenario for CME production by the eruption of a sheared-core magnetic arcade, yields the following simple estimate of the strength B(sub Flare) of the magnetic field in the flare arcade produced together with the CME: B(sub Flare) 1.4(theta CME/theta Flare)sup 2 G, where theta (sub CME) is the heliocentric angular width of the CME plasmoid in the outer corona and theta (sub Flare) is the heliocentric angular width of the full-grown flare arcade. Conversely, theta (sub CME) approximately equal to (R(sub Sun)sup -1(phi(sub Flare)/1.4)sup 1/2 radians, where Flare is the magnetic flux covered by the full-grown flare arcade. In addition to presenting the three CMEs of Moore, Sterling, & Suess (2007) and their agreement with this relation between CME and Flare, we present a further empirical test of this relation. For CMEs that erupt from active regions, the co-produced flare arcade seldom if ever covers the entire active region: if AR is the total magnetic flux of the active region, Flare . AR, and we predict that CME. (R(sub Sun))sup -1(theta AR/1.4)sup 1/2 radians. For a random sample of 31 CMEs that erupted from active regions within 30 of the limb, for each CME we have measured CME from LASCO/C3 and have measured AR from a SOHO/MDI magnetogram of the source active region when it was within 30 of disk center. We find that each CME obeys the above predicted inequality, none having width greater than half of the upper bound given by theta(sub AR). Thus, an active region's magnetic flux content, together with its location on the solar disk, largely determines whether the active region can possibly produce a CME that is wide enough to intercept the Earth.
Document ID
20090014113
Acquisition Source
Marshall Space Flight Center
Document Type
Abstract
Authors
Moore, Ron
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Falconer, David
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Sterling, Alphonse
(National Science Foundation Washington, DC, United States)
Date Acquired
August 24, 2013
Publication Date
December 7, 2008
Subject Category
Solar Physics
Report/Patent Number
M09-0129
Meeting Information
Meeting: 8th RHESSI Workshop: Solar Activity during the Onset of Solar Cycle
Location: California
Country: United States
Start Date: December 7, 2008
End Date: December 12, 2008
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available