NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A Monte-Carlo Model for the Formation of Radiation-induced Chromosomal AberrationsPurpose: To simulate radiation-induced chromosome aberrations in mammalian cells (e.g., rings, translocations, and dicentrics) and to calculate their frequency distributions following exposure to DNA double strand breaks (DSBs) produced by high-LET ions. Methods: The interphase genome was assumed to be comprised of a collection of 2 kbp rigid-block monomers following the random-walk geometry. Additional details for the modeling of chromosomal structure, such as chromosomal domains and chromosomal loops, were included. A radial energy profile for heavy ion tracks was used to simulate the high-LET pattern of induced DSBs. The induced DSB pattern depended on the ion charge and kinetic energy, but always corresponded to the DSB yield of 25 DSBs/cell/Gy. The sum of all energy contributions from Poisson-distributed particle tracks was taken to account for all possible one-track and multi-track effects. The relevant output of the model was DNA fragments produced by DSBs. The DSBs, or breakpoints, were defined by (x, y, z, l) positions, where x, y, z were the Euclidian coordinates of a DSB, and where l was the relative position along the genome. Results: The code was used to carry out Monte Carlo simulations for DSB rejoinings at low doses. The resulting fragments were analyzed to estimate the frequencies of specific types of chromosomal aberrations. Histograms for relative frequencies of chromosomal aberrations and P.D.F.s (probability density functions) of a given aberration type were produced. The relative frequency of dicentrics to rings was compared to empirical data to calibrate rejoining probabilities. Of particular interest was the predicted distribution of ring sizes, irrespective of their frequencies relative to other aberrations. Simulated ring sizes were . 4 kbp, which are far too small to be observed experimentally (i.e., by microscopy) but which, nevertheless, are conjectured to exist. Other aberrations, for example, inversions, translocations, as well as multi-centrics were also recorded. Conclusion: High-LET DNA damage affects the frequencies of chromosomal aberrations. The ratio of rings to dicentrics is correct for the genomic size cut-offs corresponding to available experimental data. The present work predicts a relative abundance of small rings following irradiation by heavy ions.
Document ID
20090015900
Acquisition Source
Johnson Space Center
Document Type
Conference Paper
Authors
Ponomarev, Artem L.
(Texas Univ. Arlington, TX, United States)
Cornforth, Michael N.
(Texas Univ. Arlington, TX, United States)
Loucas, Brad D.
(Texas Univ. Arlington, TX, United States)
Cucinotta, Francis A.
(NASA Johnson Space Center Houston, TX, United States)
Date Acquired
August 24, 2013
Publication Date
January 1, 2009
Subject Category
Life Sciences (General)
Report/Patent Number
JSC-18143
Meeting Information
Meeting: Radiation Research Society 55th Annual Meeting
Location: Georgia
Country: United States
Start Date: October 4, 2009
End Date: October 7, 2009
Sponsors: Radiation Research Society
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available