NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Quantum Entanglement Molecular Absorption Spectrum SimulatorQuantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.
Document ID
20100021342
Acquisition Source
Glenn Research Center
Document Type
Other - NASA Tech Brief
Authors
Nguyen, Quang-Viet
(NASA Glenn Research Center Cleveland, OH, United States)
Kojima, Jun
(National Academy of Sciences - National Research Council Cleveland, OH, United States)
Date Acquired
August 24, 2013
Publication Date
April 1, 2006
Publication Information
Publication: NASA Tech Briefs, April 2006
Subject Category
Electronics And Electrical Engineering
Report/Patent Number
LEW-17830-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available