NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Engineering and Technology Challenges for Active Debris RemovalAfter more than fifty years of space activities, the near-Earth environment is polluted with man-made orbital debris. The collision between Cosmos 2251 and the operational Iridium 33 in 2009 signaled a potential collision cascade effect, also known as the "Kessler Syndrome", in the environment. Various modelling studies have suggested that the commonly-adopted mitigation measures will not be sufficient to stabilize the future debris population. Active debris removal must be considered to remediate the environment. This paper summarizes the key issues associated with debris removal and describes the technology and engineering challenges to move forward. Fifty-four years after the launch of Sputnik 1, satellites have become an integral part of human society. Unfortunately, the ongoing space activities have left behind an undesirable byproduct orbital debris. This environment problem is threatening the current and future space activities. On average, two Shuttle window panels are replaced after every mission due to damage by micrometeoroid or orbital debris impacts. More than 100 collision avoidance maneuvers were conducted by satellite operators in 2010 to reduce the impact risks of their satellites with respect to objects in the U.S. Space Surveillance Network (SSN) catalog. Of the four known accident collisions between objects in the SSN catalog, the last one, collision between Cosmos 2251 and the operational Iridium 33 in 2009, was the most significant. It was the first ever accidental catastrophic destruction of an operational satellite by another satellite. It also signaled the potential collision cascade effect in the environment, commonly known as the "Kessler Syndrome," predicted by Kessler and Cour-Palais in 1978 [1]. Figure 1 shows the historical increase of objects in the SSN catalog. The majority of the catalog objects are 10 cm and larger. As of April 2011, the total objects tracked by the SSN sensors were more than 22,000. However, approximately 6000 of them had yet to be fully processed and entered into the catalog. This population had been dominated by fragmentation debris throughout history. Before the anti-satellite test (ASAT) conducted by China in 2007, the fragmentation debris were almost all explosion fragments. After the ASAT test and the collision between Iridium 33 and Cosmos 2251, the ratio of collision fragments to explosion fragments was about one-to-one. It is expected that accidental collision fragments will further dominate the environment in the future.
Document ID
20110013011
Acquisition Source
Johnson Space Center
Document Type
Conference Paper
Authors
Liou, Jer-Chyi
(NASA Johnson Space Center Houston, TX, United States)
Date Acquired
August 25, 2013
Publication Date
July 4, 2011
Subject Category
Space Transportation And Safety
Report/Patent Number
JSC-CN-24113
Meeting Information
Meeting: 4th European Conference for Aerospace Sciences
Location: Saint Petersburg
Country: Russia
Start Date: July 4, 2011
End Date: July 8, 2011
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available