NTRS - NASA Technical Reports Server

Back to Results
Detection of Planetary Emission from the Exoplanet TrES-2 Using Spitzer/IRACWe present here the results of our observations of TrES-2 using the Infrared Array Camera on Spitzer. We monitored this transiting system during two secondary eclipses, when the planetary emission is blocked by the star. The resulting decrease in flux is 0.127% +/- 0.021%, 0.230% +/- 0.024%, 0.199% +/- 0.054%, and 0.359% +/- 0.060% at 3.6 microns, 4.5 microns, 5.8 microns, and 8.0 microns, respectively. We show that three of these flux contrasts are well fit by a blackbody spectrum with T(sub eff) = 1500 K, as well as by a more detailed model spectrum of a planetary atmosphere. The observed planet-to-star flux ratios in all four lRAC channels can be explained by models with and without a thermal inversion in the atmosphere of TrES-2, although with different atmospheric chemistry. Based on the assumption of thermochemical equilibrium, the chemical composition of the inversion model seems more plausible, making it a more favorable scenario. TrES-2 also falls in the category of highly irradiated planets which have been theoretically predicted to exhibit thermal inversions. However, more observations at infrared and visible wavelengths would be needed to confirm a thermal inversion in this system. Furthermore, we find that the times of the secondary eclipses are consistent with previously published times of transit and the expectation from a circular orbit. This implies that TrES-2 most likely has a circular orbit, and thus does not obtain additional thermal energy from tidal dissipation of a non-zero orbital eccentricity, a proposed explanation for the large radius of this planet. Key words: eclipses - infrared: stars - planetary systems - stars: individual (OSC 03549-02811) - techniques: photometric
Document ID
Document Type
Reprint (Version printed in journal)
Donovan, Francis T.
(California Inst. of Tech. Pasadena, CA, United States)
Charbonneau, David
(Harvard-Smithsonian Center for Astrophysics Cambridge, MA, United States)
Harrington, Joseph
(University of Central Florida Orlando, FL, United States)
Madhusudhan, N.
(Massachusetts Inst. of Tech. Cambridge, MA, United States)
Seager, Sara
(Massachusetts Inst. of Tech. Cambridge, MA, United States)
Deming, Drake
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Knutson, Heather A.
(Harvard-Smithsonian Center for Astrophysics Cambridge, MA, United States)
Date Acquired
August 25, 2013
Publication Date
February 20, 2010
Publication Information
Publication: The Astrophysical Journal
Volume: 710
Subject Category
Report/Patent Number
Funding Number(s)
Distribution Limits
No Preview Available