NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Controlling Laser Spot Size in Outer SpaceThree documents discuss a method of controlling the diameter of a laser beam projected from Earth to any altitude ranging from low orbit around the Earth to geosynchronous orbit. Such laser beams are under consideration as means of supplying power to orbiting spacecraft at levels of the order of tens of kilowatts apiece. Each such beam would be projected by use of a special purpose telescope having an aperture diameter of 15 m or more. Expanding the laser beam to such a large diameter at low altitude would prevent air breakdown and render the laser beam eyesafe. Typically, the telescope would include an adaptive-optics concave primary mirror and a convex secondary mirror. The laser beam transmitted out to the satellite would remain in the near field on the telescope side of the beam waist, so that the telescope focal point would remain effective in controlling the beam width. By use of positioning stages having submicron resolution and repeatability, the relative positions of the primary and secondary mirrors would be adjusted to change the nominal telescope object and image distances to obtain the desired beam diameter (typically about 6 m) at the altitude of the satellite. The limiting distance D(sub L) at which a constant beam diameter can be maintained is determined by the focal range of the telescope 4 lambda f(sup 2) where lambda is the wavelength and f the f/number of the primary mirror. The shorter the wavelength and the faster the mirror, the longer D(sub L) becomes.
Document ID
20110015043
Acquisition Source
Marshall Space Flight Center
Document Type
Other - NASA Tech Brief
Authors
Bennett, Harold E.
(Optical Research Associates, Inc. United States)
Date Acquired
August 25, 2013
Publication Date
July 1, 2005
Publication Information
Publication: NASA Tech Briefs, July 2005
Subject Category
Man/System Technology And Life Support
Report/Patent Number
MFS-32039-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available