NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Magnetometer Based on Optoelectronic Microwave Oscillatorproposed instrument, intended mainly for use as a magnetometer, would include an optoelectronic oscillator (OEO) stabilized by an atomic cell that could play the role of a magnetically tunable microwave filter. The microwave frequency would vary with the magnetic field in the cell, thereby providing an indication of the magnetic field. The proposed magnetometer would offer a combination of high accuracy and high sensitivity, characterized by flux densities of less than a picotesla. In comparison with prior magnetometers, the proposed magnetometer could, in principle, be constructed as a compact, lightweight instrument: It could fit into a package of about 10 by 10 by 10 cm and would have a mass <0.5 kg. As described in several prior NASA Tech Briefs articles, an OEO is a hybrid of photonic and electronic components that generates highly spectrally pure microwave radiation, and optical radiation modulated by the microwave radiation, through direct conversion between laser light and microwave radiation in an optoelectronic feedback loop. As used here, "atomic cell" signifies a cell containing a vapor, the constituent atoms of which can be made to undergo transitions between quantum states, denoted hyperfine levels, when excited by light in a suitable wavelength range. The laser light must be in this range. The energy difference between the hyperfine levels defines the microwave frequency. In the proposed instrument (see figure), light from a laser would be introduced into an electro-optical modulator (EOM). Amplitude-modulated light from the exit port of the EOM would pass through a fiber-optic splitter having two output branches. The light in one branch would be sent through an atomic cell to a photodiode. The light in the other branch would constitute the microwave-modulated optical output. Part of the light leaving the atomic cell could also be used to stabilize the laser at a frequency in the vicinity of the desired hyperfine or other quantum transition. The microwave signal from the output of the photodiode would be amplified (if necessary, as explained below) and fed back into the EOM. This system would oscillate if the amplification in the closed loop exceeded the linear absorption of the loop. The microwave amplifier may be unnecessary to sustain stable oscillations, depending on the power of the laser radiation at the photodetector and on particular features of the modulator and optical delay line.
Document ID
20110016477
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Maleki, Lute
(California Inst. of Tech. Pasadena, CA, United States)
Strekalov, Dmitry
(California Inst. of Tech. Pasadena, CA, United States)
Matsko, Andrey
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 25, 2013
Publication Date
December 1, 2005
Publication Information
Publication: NASA Tech Briefs, December 2005
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-40958
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available