NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Utilizing the MODIS 1.38 micrometer Channel for Cirrus Cloud Optical Thickness Retrievals: Algorithm and Retrieval UncertaintiesThe cloud products from the Moderate Resolution Imaging Spectroradiometers (MODIS) on Terra and Aqua have been widely used within the atmospheric research community. The retrieval algorithms, however, oftentimes have difficulty detecting and retrieving thin cirrus, due to sensitivities to surface reflectance. Conversely, the 1.38 micron channel, located within a strong water vapor absorption band, is quite useful for detecting thin cirrus clouds since the signal from the surface can be blocked or substantially attenuated by the absorption of atmospheric water vapor below cirrus. This channel, however, suffers from nonnegligible attenuation due to the water vapor located above and within the cloud layer. Here we provide details of a new technique pairing the 1.38 micron and 1.24 micron channels to estimate the above/in-cloud water vapor attenuation and to subsequently retrieve thin cirrus optical thickness (tau) from attenuation-corrected 1.38 p.m reflectance measurements. In selected oceanic cases, this approach is found to increase cirrus retrievals by up to 38% over MOD06. For these cases, baseline 1.38 micron retrieval uncertainties are estimated to be between 15 and 20% for moderately thick cirrus (tau > 1), with the largest error source being the unknown cloud effective particle radius, which is not retrieved with the described technique. Uncertainties increase to around 90% for the thinnest clouds (tau < 0.5) where instrument and surface uncertainties dominate.
Document ID
20120002594
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Meyer, Kerry
(Oak Ridge Associated Universities, Inc. Oak Ridge, TN, United States)
Platnick, Steven
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 25, 2013
Publication Date
December 18, 2010
Publication Information
Publication: Journal of Geophysical Research
Publisher: American Geophysical Union
Volume: 115
Subject Category
Meteorology And Climatology
Report/Patent Number
GSFC.JA.5702.2011
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available