NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Multiple-Beam Detection of Fast Transient Radio SourcesA method has been designed for using multiple independent stations to discriminate fast transient radio sources from local anomalies, such as antenna noise or radio frequency interference (RFI). This can improve the sensitivity of incoherent detection for geographically separated stations such as the very long baseline array (VLBA), the future square kilometer array (SKA), or any other coincident observations by multiple separated receivers. The transients are short, broadband pulses of radio energy, often just a few milliseconds long, emitted by a variety of exotic astronomical phenomena. They generally represent rare, high-energy events making them of great scientific value. For RFI-robust adaptive detection of transients, using multiple stations, a family of algorithms has been developed. The technique exploits the fact that the separated stations constitute statistically independent samples of the target. This can be used to adaptively ignore RFI events for superior sensitivity. If the antenna signals are independent and identically distributed (IID), then RFI events are simply outlier data points that can be removed through robust estimation such as a trimmed or Winsorized estimator. The alternative "trimmed" estimator is considered, which excises the strongest n signals from the list of short-beamed intensities. Because local RFI is independent at each antenna, this interference is unlikely to occur at many antennas on the same step. Trimming the strongest signals provides robustness to RFI that can theoretically outperform even the detection performance of the same number of antennas at a single site. This algorithm requires sorting the signals at each time step and dispersion measure, an operation that is computationally tractable for existing array sizes. An alternative uses the various stations to form an ensemble estimate of the conditional density function (CDF) evaluated at each time step. Both methods outperform standard detection strategies on a test sequence of VLBA data, and both are efficient enough for deployment in real-time, online transient detection applications.
Document ID
20120006616
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Thompson, David R.
(California Inst. of Tech. Pasadena, CA, United States)
Wagstaff, Kiri L.
(California Inst. of Tech. Pasadena, CA, United States)
Majid, Walid A.
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 25, 2013
Publication Date
August 1, 2011
Publication Information
Publication: NASA Tech Briefs, August 2011
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-47678
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available