NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Mars Science Laboratory DrillThis drill (see Figure 1) is the primary sample acquisition element of the Mars Science Laboratory (MSL) that collects powdered samples from various types of rock (from clays to massive basalts) at depths up to 50 mm below the surface. A rotary-percussive sample acquisition device was developed with an emphasis on toughness and robustness to handle the harsh environment on Mars. It is the first rover-based sample acquisition device to be flight-qualified (see Figure 2). This drill features an autonomous tool change-out on a mobile robot, and novel voice-coil-based percussion. The drill comprises seven subelements. Starting at the end of the drill, there is a bit assembly that cuts the rock and collects the sample. Supporting the bit is a subassembly comprising a chuck mechanism to engage and release the new and worn bits, respectively, and a spindle mechanism to rotate the bit. Just aft of that is a percussion mechanism, which generates hammer blows to break the rock and create the dynamic environment used to flow the powdered sample. These components are mounted to a translation mechanism, which provides linear motion and senses weight-on-bit with a force sensor. There is a passive-contact sensor/stabilizer mechanism that secures the drill fs position on the rock surface, and flex harness management hardware to provide the power and signals to the translating components. The drill housing serves as the primary structure of the turret, to which the additional tools and instruments are attached. The drill bit assembly (DBA) is a passive device that is rotated and hammered in order to cut rock (i.e. science targets) and collect the cuttings (powder) in a sample chamber until ready for transfer to the CHIMRA (Collection and Handling for Interior Martian Rock Analysis). The DBA consists of a 5/8-in. (.1.6- cm) commercial hammer drill bit whose shank has been turned down and machined with deep flutes designed for aggressive cutting removal. Surrounding the shank of the bit is a thick-walled maraging steel collection tube allowing the powdered sample to be augured up the hole into the sample chamber. For robustness, the wall thickness of the DBA was maximized while still ensuring effective sample collection. There are four recesses in the bit tube that are used to retain the fresh bits in their bit box. The rotating bit is supported by a back-to-back duplex bearing pair within a housing that is connected to the outer DBA housing by two titanium diaphragms. The only bearings on the drill in the sample flow are protected by a spring-energized seal, and an integrated shield that diverts the ingested powdered sample from the moving interface. The DBA diaphragms provide radial constraint of the rotating bit and form the sample chambers. Between the diaphragms there is a sample exit tube from which the sample is transferred to the CHIMRA. To ensure that the entire collected sample is retained, no matter the orientation of the drill with respect to gravity during sampling, the pass-through from the forward to the aft chamber resides opposite to the exit tube.
Document ID
20120013241
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Okon, Avi B.
(California Inst. of Tech. Pasadena, CA, United States)
Brown, Kyle M.
(California Inst. of Tech. Pasadena, CA, United States)
McGrath, Paul L.
(California Inst. of Tech. Pasadena, CA, United States)
Klein, Kerry J.
(California Inst. of Tech. Pasadena, CA, United States)
Cady, Ian W.
(California Inst. of Tech. Pasadena, CA, United States)
Lin, Justin Y.
(California Inst. of Tech. Pasadena, CA, United States)
Ramirez, Frank E.
(California Inst. of Tech. Pasadena, CA, United States)
Haberland, Matt
(Massachusetts Inst. of Tech. Cambridge, MA, United States)
Date Acquired
August 26, 2013
Publication Date
August 1, 2012
Publication Information
Publication: NASA Tech Briefs, August 2012
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-47523
Report Number: NPO-47523
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available