NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Electric Propulsion Induced Secondary Mass SpectroscopyA document highlights a means to complement remote spectroscopy while also providing in situ surface samples without a landed system. Historically, most compositional analysis of small body surfaces has been done remotely by analyzing reflection or nuclear spectra. However, neither provides direct measurement that can unambiguously constrain the global surface composition and most importantly, the nature of trace composition and second-phase impurities. Recently, missions such as Deep Space 1 and Dawn have utilized electric propulsion (EP) accelerated, high-energy collimated beam of Xe+ ions to propel deep space missions to their target bodies. The energies of the Xe+ are sufficient to cause sputtering interactions, which eject material from the top microns of a targeted surface. Using a mass spectrometer, the sputtered material can be determined. The sputtering properties of EP exhaust can be used to determine detailed surface composition of atmosphereless bodies by electric propulsion induced secondary mass spectroscopy (EPI-SMS). EPI-SMS operation has three high-level requirements: EP system, mass spectrometer, and altitude of about 10 km. Approximately 1 keV Xe+ has been studied and proven to generate high sputtering yields in metallic substrates. Using these yields, first-order calculations predict that EPI-SMS will yield high signal-to-noise at altitudes greater than 10 km with both electrostatic and Hall thrusters.
Document ID
20120016281
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Amini, Rashied
(California Inst. of Tech. Pasadena, CA, United States)
Landis, Geoffrey
(NASA Glenn Research Center Cleveland, OH, United States)
Date Acquired
August 26, 2013
Publication Date
October 1, 2012
Publication Information
Publication: NASA Tech Briefs, October 2012
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-47798
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available