NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
On the Design of the Axel and DuAxel Rovers for Extreme Terrain ExplorationThe solar system's most scientifically tantalizing terrain remains out of reach for traditional planetary rovers, which are typically limited to driving on slopes below 30 degrees. This paper details the design of a novel robotic explorer that would open access to these previously inaccessible locales, such as Martian crater walls where evidence of salty water was recently detected, Lunar polar craters where evidence of water ice was detected, and Lunar and Martian lava tubes for future habitability. The Axel rover is a two-wheeled robot capable of rappelling down steep (even vertical) slopes supported by a tether. The DuAxel rover is comprised of two Axel vehicles docked to a central module. Unrestricted by tether length, this four-wheeled system would be capable of driving long distances from a safe landing zone to the extreme terrain of interest. Once in the vicinity of terrain in which the tether would be required, one of the Axel rovers could undock from the central chassis and rappel downslope. The other Axel and central chassis would remain topside to act as an anchor and to provide line of site to Earth (for communications) and the Sun (for energy). As the detached Axel descends into the area of interest, it would receive power and relays data through conductors in its tether. Each Axel would carry a suite of instruments in a bay that would be tucked inside the wheels. Because of the novel configuration of Axel's major degrees of freedom, these instruments could be precisely pointed at targets at any desired downslope spatial separation. These instruments could then be deployed into close proximately to the ground by means of a simple mechanism, allowing for detailed study of the strata on the slope. Axel could accommodate a host of instruments, including a microscopic imager, infra-red spectrometers, thermal probes, and sample collection devices. This paper will describe the design of both the latest generation of Axel and DuAxel systems and their instrument/sampling mechanisms. Results from recent field trials at a rock quarry in California and a Martian analog site in the desert of Arizona will be described.
Document ID
20130010649
Acquisition Source
Jet Propulsion Laboratory
Document Type
Conference Paper
External Source(s)
Authors
Matthews, Jaret B.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Nesnas, Issa A.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 27, 2013
Publication Date
March 3, 2012
Subject Category
Spacecraft Design, Testing And Performance
Meeting Information
Meeting: IEEE Aerospace Conference
Location: Big Sky, MT
Country: United States
Start Date: March 3, 2012
End Date: March 10, 2012
Sponsors: Institute of Electrical and Electronics Engineers
Distribution Limits
Public
Copyright
Other
Keywords
rover mobility
axels
steep terrains
extreme terrains

Available Downloads

There are no available downloads for this record.
No Preview Available