NASA Logo, External Link
Facebook icon, External Link to NASA STI page on Facebook Twitter icon, External Link to NASA STI on Twitter YouTube icon, External Link to NASA STI Channel on YouTube RSS icon, External Link to New NASA STI RSS Feed AddThis share icon
 

Record Details

Record 1 of 11729
Validation of the Radiometric Stability of the Atmospheric Infrared Sounder
External Online Source: hdl:2014/44936
Author and Affiliation:
Aumann, H. H.(Jet Propulsion Lab., California Inst. of Tech., Pasadena, CA, United States)
Elliott, D.(Jet Propulsion Lab., California Inst. of Tech., Pasadena, CA, United States)
Strow, L. L.(Maryland Univ. Baltimore County, Dept. of Physics, Baltimore, MD, United States)
Abstract: It has been widely accepted that an infrared sounder in low polar orbit is capable of producing climate quality data, if the spectral brightness temperatures have instrumental trends of less than 10 mK/yr. Achieving measurement stability at this level is not only very demanding of the design of the instrument, it is also pushes the state of art of measuring on orbit what stability is actually achieved. We discuss this using Atmospheric Infrared Sounder (AIRS) L1B data collected between 2002 and 2011. We compare the L1B brightness temperature observed in cloud filtered night tropical ocean spectra (obs) to the brightness temperature calculated based on the known surface emissivity, temperature and water vapor profiles from the ECMWF ReAnalysis (ERA) and the growth rates of CO2, N2O and Ozone. The trend in (obs-calc) is a powerful tool for the evaluation of the stability of the 2378 AIRS channels. We divided the channels into seven classes: All channels which sound in the stratosphere (at pressure levels below 150 hPa), 14 micron CO2 sounding, 4 micron CO2 P-branch sounding, 4 micron CO2 R-branch sounding, water vapor sounding, shortwave surface sounding and longwave surface sounding. The peak in the weighting function at 1050 hPa separates sounding and surface channels. The boundary between shortwave and longwave is 5 microns. Except for the stratosphere sounding channels, the remaining six groups have (obs-calc) trends of less than 20 mK/yr. The longwave surface channels have trends of 2 mK/yr, significantly less than the 8 mK/yr trend seem in the shortwave window channels. Based on the design of the instrument, trends within a group of channels should be the same. While the longwave and shortwave trends are less than the canonical 10 mK/yr, the larger trend in the shortwave channels could be an artifact of using the pre-launch determined calibration coefficients. This is currently under evaluation. The trend in (obs-calc) for the non-surface sounding channels, in particular for stratosphere sounding and upper tropospheric water channels, is dominated by artifacts created in calc, most likely due to changes in the ERA Ozone and water vapor. Based on this argument the best estimate of the trend for the channels within a channel group is given by the surface sensitive channels within the group. Based on this consideration we estimated the trend of all AIRS longwave channels as 2 mK/yr, while the shortwave channels have a trend of 8 mK/yr.
Publication Date: Aug 12, 2012
Document ID:
20150008717
(Acquired May 27, 2015)
Subject Category: METEOROLOGY AND CLIMATOLOGY
Document Type: Conference Paper
Meeting Information: SPIE Optics and Photonics Conference; 12-16 Aug. 2012; San Diego, CA; United States
Meeting Sponsor: International Society for Optical Engineering; Bellingham, WA, United States
Financial Sponsor: Jet Propulsion Lab., California Inst. of Tech.; Pasadena, CA, United States
Description: 8p; In English
Distribution Limits: Unclassified; Publicly available; Unlimited
Rights: Copyright
NASA Terms: INFRARED INSTRUMENTS; ATMOSPHERIC MOISTURE; CARBON DIOXIDE; NITROGEN OXIDES; CLIMATE; TEMPERATURE PROFILES; WEATHER FORECASTING; SURFACE TEMPERATURE; WATER VAPOR; CALIBRATING; POLAR ORBITS; TROPOSPHERE; RADIOMETERS
Other Descriptors: CLIMATE; CO2; N2O; CALIBRATION; HYPER-SPECTRAL
Availability Source: Other Sources
› Back to Top
Find Similar Records
NASA Logo, External Link
NASA Official: Gerald Steeman
Site Curator: STI Program
Last Modified: May 27, 2015
Contact Us