NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Cognitive Bias in the Verification and Validation of Space Flight SystemsCognitive bias is generally recognized as playing a significant role in virtually all domains of human decision making. Insight into this role is informally built into many of the system engineering practices employed in the aerospace industry. The review process, for example, typically has features that help to counteract the effect of bias. This paper presents a discussion of how commonly recognized biases may affect the verification and validation process. Verifying and validating a system is arguably more challenging than development, both technically and cognitively. Whereas there may be a relatively limited number of options available for the design of a particular aspect of a system, there is a virtually unlimited number of potential verification scenarios that may be explored. The probability of any particular scenario occurring in operations is typically very difficult to estimate, which increases reliance on judgment that may be affected by bias. Implementing a verification activity often presents technical challenges that, if they can be overcome at all, often result in a departure from actual flight conditions (e.g., 1-g testing, simulation, time compression, artificial fault injection) that may raise additional questions about the meaningfulness of the results, and create opportunities for the introduction of additional biases. In addition to mitigating the biases it can introduce directly, the verification and validation process must also overcome the cumulative effect of biases introduced during all previous stages of development. A variety of cognitive biases will be described, with research results for illustration. A handful of case studies will be presented that show how cognitive bias may have affected the verification and validation process on recent JPL flight projects, identify areas of strength and weakness, and identify potential changes or additions to commonly used techniques that could provide a more robust verification and validation of future systems.
Document ID
20150008808
Acquisition Source
Jet Propulsion Laboratory
Document Type
Conference Paper
External Source(s)
Authors
Larson, Steve
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
May 26, 2015
Publication Date
March 3, 2012
Subject Category
Statistics And Probability
Meeting Information
Meeting: 2012 IEEE Aerospace Conference
Location: Big Sky, MT
Country: United States
Start Date: March 3, 2012
End Date: March 10, 2012
Sponsors: Institute of Electrical and Electronics Engineers
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available