NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Characterization of Aerosol Episodes in the Greater Mediterranean Sea Area from Satellite Observations (2000-2007)An algorithm able to identify and characterize episodes of different aerosol types above sea surfaces of the greater Mediterranean basin (GMB), including the Black Sea and the Atlantic Ocean off the coasts of Iberia and northwest Africa, is presented in this study. Based on this algorithm, five types of intense (strong and extreme) aerosol episodes in the GMB are identified and characterized using daily aerosol optical properties from satellite measurements, namely MODIS-Terra, Earth Probe (EP)-TOMS and OMIAura. These aerosol episodes are: (i) biomass-burning/urban-industrial (BU), (ii) desert dust (DD), (iii) dust/sea-salt (DSS), (iv) mixed (MX) and (v) undetermined (UN). The identification and characterization is made with our algorithm using a variety of aerosol properties, namely aerosol optical depth (AOD), Angstrom exponent (a), fine fraction (FF), effective radius (reff) and Aerosol Index (AI). During the study period (2000e2007), the most frequent aerosol episodes are DD, observed primarily in the western and central Mediterranean Sea, and off the northern African coasts, 7 times/year for strong episodes and 4 times/year for extreme ones, on average. The DD episodes yield 40% of all types of strong aerosol episodes in the study region, while they account for 71.5% of all extreme episodes. The frequency of occurrence of strong episodes exhibits specific geographical patterns, for example the BU are mostly observed along the coasts of southern Europe and off the Atlantic coasts of Portugal, the MX episodes off the Spanish Mediterranean coast and over the Adriatic and northern Aegean Sea, while the DSS ones over the western and central Mediterranean Sea. On the other hand, the extreme episodes for all but DD aerosol display more patchy spatial patterns. The strong episodes exhibit AOD at 550 nm as high as 1.6 in the southernmost parts of central and eastern Mediterranean Sea, which rise up to 5 for the extreme, mainly DD and DSS, episodes. Although more than 90% of all aerosol episodes last 1 day, there are few cases, mainly extreme DD episodes, which last up to 4 days. Independently of their type, the Mediterranean aerosol episodes occur more frequently in spring (strong and extreme episodes) and summer (strong episodes) and most rarely during winter. A significant year by year variability of Mediterranean aerosol episodes has been identified, more in terms of their frequency than intensity. An analysis of 5-day back trajectories for the most extreme episodes provides confidence on the obtained results of the algorithm, based on the revealed origin and track of air masses causing the episodes. The 25 and 6% of all strong and extreme episodes, respectively, are MX, thus highlighting the co-existence of different aerosol types in the greater Mediterranean. The intensity of both MX and DSS episodes exhibits similar patterns to those of DD strong ones, indicating that desert dust is a determinant factor for the intensity of aerosol episodes in the Mediterranean, including DSS and MX episodes.
Document ID
20160004975
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
Authors
Gkikas, A.
(Ioannina Univ. Greece)
Hatzianastassiou, N.
(Ioannina Univ. Greece)
Mihalopoulos, N.
(Crete Univ. Crete, Greece)
Torres, O.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Date Acquired
April 11, 2016
Publication Date
December 5, 2015
Publication Information
Publication: Atmospheric Environment
Publisher: Atmospheric Environment
Volume: 128
ISSN: 1352-2310
Subject Category
Environment Pollution
Report/Patent Number
GSFC-E-DAA-TN31188
Distribution Limits
Public
Copyright
Other
Keywords
Atmospheric Chemistry
Air Pollution
Aerosols

Available Downloads

There are no available downloads for this record.
No Preview Available