NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Megafans-Some New Perspectives from a Global StudyA global study of megafans (greater than 100 km long) has revealed their widespread existence on all continents, with almost 200 documented, 93 in Africa where research is most thorough. The largest measures 705 km. Megafans are a major subset of "DFS" (distributive fluvial systems, a category that includes all fan-like features greater than 30 km long). 1. Many researchers now recognize megafans as different from floodplains, small coarse-grained alluvial fans, and deltas. Although smaller architectural elements in megafans are the same as those encountered in floodplains (channel, overbank, etc.), larger architectures differ because of the unconfined setting of megafans, versus the valley-confined setting of floodplains. 2. A length continuum is now documented between steep alluvial fans 10-20 km in length, and fluvial fans 30-50 km long. This implies a continuum of process from end-member alluvial fan processes (e.g. high-energy flows that emplace gravels, debris-flow units) to the relatively fine-grained channel and overbank deposits common to purely fluvial fans. Combinations of these different processes will then occur in many mid-sized fans. 3. The global distribution suggests a prima facie relationship with tectonic environment rather than climatic zones, with local controls being the slope of the formative river and the existence of a basin subsiding below the long profile of the river. But the global population has revealed that most megafans are relict. So it is possible that further research will show relationships to prior climatic regimes. 4. Megafans can have regional importance: e.g., along the east flank of the central Andes, nested megafans total approximately 750,000 km2-and 1.2m km2 if all megafans in S. America are counted. Modern megafan landscapes thus have basinal importance, orders of magnitude greater than alluvial fan bajadas. 5. Because so many aggrading basins are dominated today by DFS, it is claimed that DFS ought to be significant in the subsurface; and that existing fluvial models therefore may not apply to the majority of fluvial sedimentary units. Arguments have been raised against this view, but as modern megafan systems become better known they are rapidly being applied as a model in many fluvial basins. A small literature has arisen with apparent examples from every part of the world.
Document ID
20160011580
Acquisition Source
Johnson Space Center
Document Type
Conference Paper
Authors
Wilkinson, M. Justin
(Jacobs Technology, Inc. Houston, TX, United States)
Date Acquired
September 30, 2016
Publication Date
September 25, 2016
Subject Category
Geosciences (General)
Report/Patent Number
JSC-CN-37579
Meeting Information
Meeting: GSA 2016
Location: Denver, CO
Country: United States
Start Date: September 25, 2016
End Date: September 28, 2016
Sponsors: Geological Society of America
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available