NTRS - NASA Technical Reports Server

Back to Results
The Comprehensive Inner Magnetosphere-Ionosphere ModelSimulation studies of the Earth's radiation belts and ring current are very useful in understanding the acceleration, transport, and loss of energetic particles. Recently, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model were merged to form a Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. CIMI solves for many essential quantities in the inner magnetosphere, including ion and electron distributions in the ring current and radiation belts, plasmaspheric density, Region 2 currents, convection potential, and precipitation in the ionosphere. It incorporates whistler mode chorus and hiss wave diffusion of energetic electrons in energy, pitch angle, and cross terms. CIMI thus represents a comprehensive model that considers the effects of the ring current and plasmasphere on the radiation belts. We have performed a CIMI simulation for the storm on 5-9 April 2010 and then compared our results with data from the Two Wide-angle Imaging Neutral-atom Spectrometers and Akebono satellites. We identify the dominant energization and loss processes for the ring current and radiation belts. We find that the interactions with the whistler mode chorus waves are the main cause of the flux increase of MeV electrons during the recovery phase of this particular storm. When a self-consistent electric field from the CRCM is used, the enhancement of MeV electrons is higher than when an empirical convection model is applied. We also demonstrate how CIMI can be a powerful tool for analyzing and interpreting data from the new Van Allen Probes mission.
Document ID
Document Type
Reprint (Version printed in journal)
External Source(s)
Fok, M.-C. (NASA Goddard Space Flight Center Greenbelt, MD United States)
Buzulukova, N. Y. (Maryland Univ. College Park, MD, United States)
Chen, S.-H. (Universities Space Research Association Greenbelt, MD, United States)
Glocer, A. (NASA Goddard Space Flight Center Greenbelt, MD United States)
Nagai, T. (Tokyo Inst. of Tech. Tokyo, Japan)
Valek, P. (Southwest Research Inst. San Antonio, TX, United States)
Perez, J. D. (Alabama Univ. Auburn, AL, United States)
Date Acquired
January 31, 2017
Publication Date
September 24, 2014
Publication Information
Publication: Journal of Geophysical Research: Space Physics
Volume: 119
Issue: 9
Subject Category
Space Sciences (General)
Report/Patent Number
Funding Number(s)
Distribution Limits
Inner Magnetosphere
Ring Current
Magnetosphere-Ionosphere Coupling
Radiation Belts