NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Synthetic Scenarios from CMIP5 Model Simulations for Climate Change Impact Assessments in Managed Ecosystems and Water Resources: Case Study in South Asian CountriesIncreasing population, urbanization, and associated demand for food production compounded by climate change and variability have important implications for the managed ecosystems and water resources of a region. This is particularly true for south Asia, which supports one quarter of the global population, half of whom live below the poverty line. This region is largely dependent on monsoon precipitation for water. Given the limited resources of the developing countries in this region, the objective of our study was to empirically explore climate change in south Asia up to the year 2099 using monthly simulations from 35 global climate models (GCMs) participating in the fifth phase of the Climate Model Inter-comparison Project (CMIP5) for two future emission scenarios (representative concentration pathways RCP4.5 and RCP8.5) and provide a wide range of potential climate change outcomes. This was carried out using a three-step procedure: calculating the mean annual, monsoon, and non-monsoon precipitation and temperatures; estimating the percent change from historical conditions; and developing scenario funnels and synthetic scenarios. This methodology was applied for the entire south Asia region; however, the percent change information generated at 1.5deg grid scale can be used to generate scenarios at finer spatial scales. Our results showed a high variability in the future change in precipitation (-23% to 52%, maximum in the non-monsoon season) and temperature (0.8% to 2.1%) in the region. Temperatures in the region consistently increased, especially in the Himalayan region, which could have impacts including a faster retreat of glaciers and increased floods. It could also change rivers from perennial to seasonal, leading to significant challenges in water management. Increasing temperatures could further stress groundwater reservoirs, leading to withdrawal rates that become even more unsustainable. The high precipitation variability (with higher propensity for localized intense rainfall events) observed in the region can be a key factor for managed ecosystems and water management and could also lead to more incidence of severe urban flooding. The results could be used to assess both mitigation and adaptation alternatives to reduce vulnerabilities in managed ecosystems (agricultural and urban) and water resources.
Document ID
20170001438
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Anandhi, A.
(Florida Agricultural and Mechanical Univ. Tallahassee, FL, United States)
Omani, N.
(Purdue Univ. West Lafayette, IN, United States)
Chaubey, I.
(Purdue Univ. West Lafayette, IN, United States)
Horton, R.
(Columbia Univ. New York, NY, United States)
Bader, D.
(Columbia Univ. New York, NY, United States)
Nanjundiah, R. S.
(Indian Inst. of Science Bangalore, India)
Date Acquired
February 8, 2017
Publication Date
January 1, 2017
Publication Information
Publication: Translations of the American Society of Agricultural and Biological Engineers (ASABE)
Publisher: ASABE
Volume: 59
Issue: 6
ISSN: 2151-0032
e-ISSN: 2151-0040
Subject Category
Meteorology And Climatology
Report/Patent Number
GSFC-E-DAA-TN39023
Funding Number(s)
CONTRACT_GRANT: 11979180/2016-01711
CONTRACT_GRANT: NNX14AB99A
Distribution Limits
Public
Copyright
Other
Keywords
agriculture
climate change
agro-ecosystems
mitigation
water supply
urban ecosystems
adaptation

Available Downloads

There are no available downloads for this record.
No Preview Available