NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Regenerative Gas Dryer for In-Situ Propellant ProductionRocket propellant can be produced anywhere that water is found by splitting it into hydrogen and oxygen, potentially saving several tons of mass per mission and enabling the long term presence of humans in space beyond LEO. When water is split into hydrogen and oxygen, the gaseous products can be very humid (several thousand ppm). Propellant-grade gases need to be extremely dry before being converted into cryogenic liquids (less than 26 ppm water for grade B Oxygen). The primary objective of this project is to design, build and test a regenerative gas drying system that can take humid gas from a water electrolysis system and provide dry gas (less than 26ppm water) to the inlet of a liquefaction system for long durations. State of the art work in this area attempted to use vacuum as a means to regenerate desiccant, but it was observed that water would migrate to the dry zone without a sweep gas present to direct the desorbed vapor. Further work attempted to use CO2 as a sweep gas, but this resulted in a corrosive carbonic acid. In order for in-situ propellant production to work, we need a way to continuously dry humid gas that addresses these issues.
Document ID
20170002075
Acquisition Source
Johnson Space Center
Document Type
Other
Authors
Paz, Aaron
(NASA Johnson Space Center Houston, TX, United States)
Date Acquired
March 9, 2017
Publication Date
January 1, 2017
Subject Category
Propellants And Fuels
Report/Patent Number
JSC-CN-38582
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available