NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Exploring X-Ray Binary Populations in Compact Group Galaxies With ChandraWe obtain total galaxy X-ray luminosities, LX, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the +/-1σ scatter of the Mineo et al. LX-star formation rate (SFR) correlation or have higher LX than predicted by this correlation for their SFR. We discuss how these "excesses" may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. LX-stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low- or high-mass XRBs, we use appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme LX values. We find that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high LX values can be observed due to strong XRB variability.
Document ID
20170002324
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
Authors
Tzanavaris, P.
(Maryland Univ. Baltimore County Baltimore, MD, United States)
Hornschemeier, A. E..
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Gallagher, S. C.
(University of Western Ontario London, Ontario, Canada)
Lenkic, L.
(University of Western Ontario London, Ontario, Canada)
Desjardins, T. D.
(Kentucky Univ. Lexington, KY, United States)
Walker, L. M.
(Arizona Univ. Tucson, AZ, United States)
Johnson, K. E.
(Virginia Univ. Charlottesville, VA, United States)
Mulchaey, J. S.
(Carnegie Institution for Science Pasadena, CA, United States)
Date Acquired
March 17, 2017
Publication Date
January 25, 2016
Publication Information
Publication: The Astrophysical Journal
Publisher: The American Astronomical Society
Volume: 817
Issue: 2
ISSN: 0004-637X
e-ISSN: 1538-4357
Subject Category
Astrophysics
Report/Patent Number
GSFC-E-DAA-TN40099
Funding Number(s)
CONTRACT_GRANT: NNG06EO90A
Distribution Limits
Public
Copyright
Other
Keywords
X-rays: binaries
X-rays: galaxies

Available Downloads

There are no available downloads for this record.
No Preview Available