NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Constraining the Depth of Polar Ice Deposits and Evolution of Cold Traps on Mercury with Small Craters in Permanently Shadowed RegionsEarth-based radar observations revealed highly reflective deposits at the poles of Mercury [e.g., 1], which collocate with permanently shadowed regions (PSRs) detected from both imagery and altimetry by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft [e.g., 2]. MESSENGER also measured higher hydrogen concentrations at the north polar region, consistent with models for these deposits to be composed primarily of water ice [3]. Enigmatic to the characterization of ice deposits on Mercury is the thickness of these radar-bright features. A current minimum bound of several meters exists from the radar measurements, which show no drop in the radar cross section between 13- and 70-cm wavelength observations [4, 5]. A maximum thickness of 300 m is based on the lack of any statistically significant difference between the height of craters that host radar-bright deposits and those that do not [6]. More recently, this upper limit on the depth of a typical ice deposit has been lowered to approximately 150 m, in a study that found a mean excess thickness of 50 +/- 35 m of radar-bright deposits for 6 craters [7]. Refining such a constraint permits the derivation of a volumetric estimate of the total polar ice on Mercury, thus providing insight into possible sources of water ice on the planet. Here, we take a different approach to constrain the thickness of water-ice deposits. Permanently shadowed surfaces have been resolved in images acquired with the broadband filter on MESSENGER's wide-angle camera (WAC) using low levels of light scattered by crater walls and other topography [8]. These surfaces are not featureless and often host small craters (less than a few km in diameter). Here we utilize the presence of these small simple craters to constrain the thickness of the radar-bright ice deposits on Mercury. Specifically, we compare estimated depths made from depth-to-diameter ratios and depths from individual Mercury Laser Altimeter (MLA) tracks to constrain the fill of material of small craters that lie within the permanently shadowed, radar bright deposits of 7 north polar craters.
Document ID
20170002426
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Deutsch, Ariel N.
(Scientific Collaborator)
Head, James W.
(Scientific Collaborator)
Neumann, Gregory A.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Chabot, Nancy L.
(Scientific Collaborator)
Date Acquired
March 23, 2017
Publication Date
March 20, 2017
Subject Category
Geosciences (General)
Report/Patent Number
GSFC-E-DAA-TN39689
Meeting Information
Meeting: Lunar Planetary Science Conference
Location: The Woodlands, TX
Country: United States
Start Date: March 20, 2017
End Date: March 24, 2017
Sponsors: Lunar and Planetary Inst., Universities Space Research Association
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available