NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
New-Generation NASA Aura Ozone Monitoring Instrument (OMI) Volcanic SO2 Dataset: Algorithm Description, Initial Results, and Continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS)Since the fall of 2004, the Ozone Monitoring Instrument (OMI) has been providing global monitoring of volcanic SO2 emissions, helping to understand their climate impacts and to mitigate aviation hazards. Here we introduce a new-generation OMI volcanic SO2 dataset based on a principal component analysis (PCA) retrieval technique. To reduce retrieval noise and artifacts as seen in the current operational linear fit (LF) algorithm, the new algorithm, OMSO2VOLCANO, uses characteristic features extracted directly from OMI radiances in the spectral fitting, thereby helping to minimize interferences from various geophysical processes (e.g., O3 absorption) and measurement details (e.g., wavelength shift). To solve the problem of low bias for large SO2 total columns in the LF product, the OMSO2VOLCANO algorithm employs a table lookup approach to estimate SO2 Jacobians (i.e., the instrument sensitivity to a perturbation in the SO2 column amount) and iteratively adjusts the spectral fitting window to exclude shorter wavelengths where the SO2 absorption signals are saturated. To first order, the effects of clouds and aerosols are accounted for using a simple Lambertian equivalent reflectivity approach. As with the LF algorithm, OMSO2VOLCANO provides total column retrievals based on a set of predefined SO2 profiles from the lower troposphere to the lower stratosphere, including a new profile peaked at 13 km for plumes in the upper troposphere. Examples given in this study indicate that the new dataset shows significant improvement over the LF product, with at least 50% reduction in retrieval noise over the remote Pacific. For large eruptions such as Kasatochi in 2008 (approximately 1700 kt total SO2/ and Sierra Negra in 2005 (greater than 1100DU maximum SO2), OMSO2VOLCANO generally agrees well with other algorithms that also utilize the full spectral content of satellite measurements, while the LF algorithm tends to underestimate SO2. We also demonstrate that, despite the coarser spatial and spectral resolution of the Suomi National Polar-orbiting Partnership (Suomi-NPP) Ozone Mapping and Profiler Suite (OMPS) instrument, application of the new PCA algorithm to OMPS data produces highly consistent retrievals between OMI and OMPS. The new PCA algorithm is therefore capable of continuing the volcanic SO2 data record well into the future using current and future hyperspectral UV satellite instruments.
Document ID
20170002642
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Li, Can
(Maryland Univ. College Park, MD, United States)
Krotkov, Nickolay A.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Carn, Simon
(Michigan Technological Univ. Houghton, MI, United States)
Zhang, Yan
(Maryland Univ. College Park, MD, United States)
Spurr, Robert J. D.
(RT Solutions, Inc. Cambridge, MA, United States)
Joiner, Joanna
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
March 29, 2017
Publication Date
February 6, 2017
Publication Information
Publication: Atmospheric Measurement Techniques
Publisher: Copernicus Publications
Volume: 10
Issue: 2
e-ISSN: 1867-8548
Subject Category
Meteorology And Climatology
Environment Pollution
Report/Patent Number
GSFC-E-DAA-TN40279
Funding Number(s)
CONTRACT_GRANT: NNX17AE79A
CONTRACT_GRANT: NNX14AI02G
Distribution Limits
Public
Copyright
Other
Keywords
OMI
SO2
OMPS
Volcano

Available Downloads

There are no available downloads for this record.
No Preview Available