NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The Pilatus Unmanned Aircraft System for Lower Atmospheric ResearchThis paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research-grade lower tropospheric measurement missions.
Document ID
20170002664
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
de Boer, Gijs
(Colorado Univ. Boulder, CO, United States)
Palo, Scott
(Colorado Univ. Boulder, CO, United States)
Argrow, Brian
(Colorado Univ. Boulder, CO, United States)
LoDolce, Gabriel
(Colorado Univ. Boulder, CO, United States)
Mack, James
(Colorado Univ. Boulder, CO, United States)
Gao, Ru-shan
(National Oceanic and Atmospheric Administration Boulder, CO, United States)
Telg, Hagen
(Colorado Univ. Boulder, CO, United States)
Trussel, Cameron
(Colorado Univ. Boulder, CO, United States)
Fromm, Joshua
(Colorado Univ. Boulder, CO, United States)
Long, Charles N.
(Colorado Univ. Boulder, CO, United States)
Bland, Geoff
(NASA Wallops Flight Facility Wallops Island, VA, United States)
Maslanik, James
(Colorado Univ. Boulder, CO, United States)
Schmid, Beat
(Pacific Northwest National Lab. Richland, WA, United States)
Hock, Terry
(National Center for Atmospheric Research Boulder, CO, United States)
Date Acquired
March 29, 2017
Publication Date
April 28, 2016
Publication Information
Publication: Atmospheric Measurement Techniques
Publisher: Copernicus Publications on behalf of EGU
Volume: 9
Issue: 4
ISSN: 1867-1381
e-ISSN: 1867-8548
Subject Category
Meteorology And Climatology
Report/Patent Number
GSFC-E-DAA-TN40405
Funding Number(s)
CONTRACT_GRANT: NNH08HR03A
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available