NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Aerosol Optical Properties Derived from the DRAGON-NE Asia Campaign, and Implications for a Single-Channel Algorithm to Retrieve Aerosol Optical Depth in Spring from Meteorological Imager (MI) On-Board the Communication, Ocean, and Meteorological Satellite (COMS)An aerosol model optimized for northeast Asia is updated with the inversion data from the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-northeast (NE) Asia campaign which was conducted during spring from March to May 2012. This updated aerosol model was then applied to a single visible channel algorithm to retrieve aerosol optical depth (AOD) from a Meteorological Imager (MI) on-board the geostationary meteorological satellite, Communication, Ocean, and Meteorological Satellite (COMS). This model plays an important role in retrieving accurate AOD from a single visible channel measurement. For the single-channel retrieval, sensitivity tests showed that perturbations by 4 % (0.926 +/- 0.04) in the assumed single scattering albedo (SSA) can result in the retrieval error in AOD by over 20 %. Since the measured reflectance at the top of the atmosphere depends on both AOD and SSA, the overestimation of assumed SSA in the aerosol model leads to an underestimation of AOD. Based on the AErosol RObotic NETwork (AERONET) inversion data sets obtained over East Asia before 2011, seasonally analyzed aerosol optical properties (AOPs) were categorized by SSAs at 675 nm of 0.92 +/- 0.035 for spring (March, April, and May). After the DRAGON-NE Asia campaign in 2012, the SSA during spring showed a slight increase to 0.93 +/- 0.035. In terms of the volume size distribution, the mode radius of coarse particles was increased from 2.08 +/- 0.40 to 2.14 +/- 0.40. While the original aerosol model consists of volume size distribution and refractive indices obtained before 2011, the new model is constructed by using a total data set after the DRAGON-NE Asia campaign. The large volume of data in high spatial resolution from this intensive campaign can be used to improve the representative aerosol model for East Asia. Accordingly, the new AOD data sets retrieved from a single-channel algorithm, which uses a precalculated look-up table (LUT) with the new aerosol model, show an improved correlation with the measured AOD during the DRAGON-NE Asia campaign. The correlation between the new AOD and AERONET value shows a regression slope of 1.00, while the comparison of the original AOD data retrieved using the original aerosol model shows a slope of 1.08. The change of y-offset is not significant, and the correlation coefficients for the comparisons of the original and new AOD are 0.87 and 0.85, respectively. The tendency of the original aerosol model to overestimate the retrieved AOD is significantly improved by using the SSA values in addition to size distribution and refractive index obtained using the new model.
Document ID
20170003278
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
Authors
Kim, M.
(Yonsei Univ. Seoul, Korea, Republic of)
Kim, J.
(Yonsei Univ. Seoul, Korea, Republic of)
Jeong, U.
(Yonsei Univ. Seoul, Korea, Republic of)
Kim, W.
(Yonsei Univ. Seoul, Korea, Republic of)
Hong, H.
(Pukyong National Univ. Busan, Korea, Republic of)
Holben, B.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Eck, T. F.
(Universities Space Research Association Greenbelt, MD, United States)
Lim, J.
(National Institute of Environmental Research Incheon, Korea, Republic of)
Song, C.
(National Institute of Environmental Research Incheon, Korea, Republic of)
Lee, S.
(National Institute of Environmental Research Incheon, Korea, Republic of)
Chung, C.-Y.
(National Satellite Meteorological Center Beijing, China)
Date Acquired
April 7, 2017
Publication Date
February 16, 2016
Publication Information
Publication: Atmospheric Chemistry and Physics
Publisher: Copernicus Publications
Volume: 16
Issue: 3
ISSN: 1680-7316
e-ISSN: 1680-7324
Subject Category
Earth Resources And Remote Sensing
Report/Patent Number
GSFC-E-DAA-TN41228
Funding Number(s)
CONTRACT_GRANT: NNG11HP16A
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available