NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Europa Spacecraft Configuration Optimization for the Solar Powered VehicleA mission to Europa has been on the minds of NASA and JPL for many years. After the Galileo mission to Jupiter in the 1990s there have been various proposals for missions to the Jovian moon. The most recent proposal, previously named the Europa Clipper, has gone through numerous iterations of spacecraft configurations on its road to becoming an official NASA project in June of 2015. Most of these configurations included options for either multi mission radioisotope thermoelectric generators (MMRTGs) or solar power. In 2014, the decision was made to focus on solar arrays as the source for spacecraft power. The decision to move forward with a baseline design that utilized only solar arrays as its power system meant that some configuration choices had to be re- evaluated. Initially, a configuration was adapted to keep as much of the previous spacecraft design the same while replacing MMRTGs with solar panels. This proved to be difficult as the arrays presented a slew of new challenges that the nuclear vehicle was not optimized for. The solar arrays needed to be large due to Jupiter's substantial distance from the Sun. This meant that many of the instrument and radiator FOVs would now be obstructed, or would receive reflected light and heat from the large panel s. Also, the mass of the panels meant that mounting near the bottom of the spacecraft would be sub-optimal as the wings would cause major disturbance to the vehicle as they oscillated in their deployed state. Another major, and possibly the largest, concern was the fact that as the high gain antenna pointed to Earth for communication, the Ice Penetrating Radar (IPR) would cast a large shadow on the cell -side of the array. This resulted in an estimated 10% power loss to the vehicle. On top of all this, NASA announced the selection of the instruments that would fly on the Europa mission and replace the notional instrument suite that had been used to develop and submit the project proposal. The selected instruments, while not varying widely from the notional suite, did come with a new set of challenges including a size increase over the notional package, thus requiring more room for accommodation. They also introduced new features not previously addressed by the notional package, such as a two-axis gimbal on one of the imagers. Additionally, two new instruments, an ultraviolet plume -hunting spectrograph, and an atmospheric dust analyzer we added to the payload and presented new challenges not previously covered in the proposal. Finally, additional payloads were under consideration, such as a 250kg ejectable payload that would be released at Jupiter and would accomplish flybys of some of the other Jovian moons. All of this resulted in a drastically different "family" of configurations that were capable of addressing these issues, and staying flexible to the numerous potential changes that could come. This paper discusses the details of the various configurations considered to address these items, and the configuration concepts that were selected as the baseline for moving forward with the proposal.
Document ID
20170007083
Acquisition Source
Jet Propulsion Laboratory
Document Type
Conference Paper
Authors
Horner, Matthew D.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Eremenko, Alexander
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 1, 2017
Publication Date
March 5, 2016
Subject Category
Spacecraft Propulsion And Power
Energy Production And Conversion
Report/Patent Number
JPL-CL-16-0018
Meeting Information
Meeting: IEEE Aerospace Conference
Location: Big Sky, MT
Country: United States
Start Date: March 5, 2016
End Date: March 12, 2016
Sponsors: Institute of Electrical and Electronics Engineers
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available