NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Formation of Heliospheric Arcs of Slow Solar WindA major challenge in solar and heliospheric physics is understanding the origin and nature of the so-called slow solar wind. The Sun's atmosphere is divided into magnetically open regions, known as coronal holes, where the plasma streams out freely and fills the solar system, and closed regions, where the plasma is confined to coronal loops. The boundary between these regions extends outward as the heliospheric current sheet (HCS). Measurements of plasma composition strongly imply that much of the slow wind consists of plasma from the closed corona that escapes onto open field lines, presumably by field-line opening or by interchange reconnection. Both of these processes are expected to release closed-field plasma into the solar wind within and immediately adjacent to the HCS. Mysteriously, however, slow wind with closed-field plasma composition is often observed in situ far from the HCS. We use high-resolution, three-dimensional, magnetohydrodynamic simulations to calculate the dynamics of a coronal hole with a geometry that includes a narrow corridor flanked by closed field and is driven by supergranule-like flows at the coronal-hole boundary. These dynamics produce giant arcs of closed-field plasma that originate at the open-closed boundary in the corona, but extend far from the HCS and span tens of degrees in latitude and longitude at Earth. We conclude that such structures can account for the long-puzzling slow-wind observations.
Document ID
20170007773
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
Authors
Higginson, A. K.
(Michigan Univ. Ann Arbor, MI, United States)
Antiochos, S. K.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Devore, C. R.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Wyper, P. F.
(Durham Univ. United Kingdom)
Zurbuchen, T. H.
(NASA Headquarters Washington, DC United States)
Date Acquired
August 17, 2017
Publication Date
May 3, 2017
Publication Information
Publication: The Astrophysical Journal Letters
Publisher: The American Astronomical Society
Volume: 840
Issue: 1
ISSN: 2041-8205
e-ISSN: 2041-8213
Subject Category
Solar Physics
Report/Patent Number
GSFC-E-DAA-TN45558
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available