NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Correlations Among Microstructure, Morphology, Chemistry, and Isotopic Systematics of Hibonite in CM ChondritesIntroduction: Hibonite is a primary refractory phase occurring in many CAIs, typically with spinel and perovskite. Our microstructural studies of CAIs from carbonaceous chondrites reveal a range of stacking defect densities and correlated non-stoichiometry in hibonite. We also conducted a series of annealing experiments, demonstrating that the Mg-Al substitution stabilized the formation of defect-structured hibonite. Here, we continue a detailed TEM analysis of hibonite-bearing inclusions from CM chondrites that have been well-characterized isotopically. We examine possible correlations of microstructure, morphology, mineralogy, and chemical and isotopic systematics of CM hibonites in order to better understand the formation history of hibonite in the early solar nebula. Methods: Fifteen hibonite-bearing inclusions from the Paris CM chondrite were analyzed using a JEOL 7600F SEM and a JEOL 8530F electron microprobe. In addition to three hibonite-bearing inclusions from the Murchison CM chondrite previously reported, we selected three inclusions from Paris, Pmt1-6, 1-9, and 1-10, representing a range of 26Al/27Al ratios and minor element concentrations for a detailed TEM study. We extracted TEM sections from hibonite grains using a FEI Quanta 3D field emission gun SEM/FIB. The sections were then examined using a JEOL 2500SE field-emission scanning TEM equipped with a Thermo-Noran thin window EDX spectrometer. Results and Discussion: A total of six hibonite-bearing inclusions, including two platy hibonite crystals (PLACs) and four spinel-hibonite inclusions (SHIBs), were studied. There are notable differences in chemical and isotopic compositions between the inclusions (Table 1), indicative of their different formation environment or timing. Our TEM observations show perfectly-ordered, stoichiometric hibonite crystals without stacking defects in two PLACs, 2-7-1 and 2-8-2, and in three SHIBs, Pmt1-6, 1-9, and 1-10. In contrast, SHIB 1-9-5 hibonite grains contain a low density of stacking defects linked to an increase in MgO contents, indicating complex, disordered intergrowths of stoichiometric and MgO-enriched hibonites. From the data collected to date, we find no clear correlation between the microstructures of hibonite and its morphological and mineralogical types that reflect distinct chemical and isotopic systematics [6-8,10]. Interestingly, the presence of no or few stacking defects in hibonite from the PLACs and SHIBs are in contrast to our experimental studies that produced very high densities of stacking defects in hibonite [3-5]. Unlike our experi-ments, electron microprobe data from the PLACs and SHIBs hibonite grains show a strong correlation between (Ti4++Si4+) and Mg2+ cations, suggesting that coupled substitutions of (Ti4++Mg2+) and (Si4++Mg2+) for 2Al3+ inhibit the formation of defect-structured hibonite. However, our experimental studies suggest that kinetics (e.g., cooling rate) or other thermal effects also exert a strong control on the microstructures and chemical compositions of hibonite. In Pmt1-6, elongated perovskite grains present at the hibonite grain boundaries display (121) twinning, indicative of a fast cooling (>50degC/min) after high-temperature events. Therefore, the nebular microstructural characteristics of hibonite, at least in this inclusion, would not have destroyed by subsequent high-temperature annealing. Conclusions: Our TEM observations thus far show no clear correlation in microstructures, morphological and mineralogical characteristics, and chemical and isotopic systematics of hibonites from CM chondrites. The observed variation in stacking defect densities in the hibonites may be controlled by thermal processes in the early solar nebula. A detailed TEM analysis of additional CM hibonite samples is underway to evaluate this hypothesis.
Document ID
20170008547
Acquisition Source
Johnson Space Center
Document Type
Conference Paper
Authors
Han, J.
(Lunar and Planetary Inst. Houston, TX, United States)
Liu, M.-C..
(California Univ. Los Angeles, CA, United States)
Keller, L. P.
(NASA Johnson Space Center Houston, TX, United States)
Davis, A. M.
(Chicago Univ. Chicago, IL, United States)
Date Acquired
September 7, 2017
Publication Date
July 23, 2017
Subject Category
Geosciences (General)
Chemistry And Materials (General)
Report/Patent Number
JSC-CN-39717
Meeting Information
Meeting: Meteoritical Society Meeting
Location: Santa Fe, NM
Country: United States
Start Date: July 23, 2017
End Date: July 28, 2017
Sponsors: Meteoritical Society
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available