NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Increasing Flight Software Reuse with OpenSatKitIn January 2015 the NASA Goddard Space Flight Center (GSFC) released the Core Flight System (cFS) as open source under the NASA Open Source Agreement (NOSA) license. The cFS is based on flight software (FSW) developed for 12 spacecraft spanning nearly two decades of effort and it can provide about a third of the FSW functionality for a low-earth orbiting scientific spacecraft. The cFS is a FSW framework that is portable, configurable, and extendable using a product line deployment model. However, the components are maintained separately so the user must configure, integrate, and deploy them as a cohesive functional system. This can be very challenging especially for organizations such as universities building cubesats that have minimal experience developing FSW. Supporting universities was one of the primary motivators for releasing the cFS under NOSA. This paper describes the OpenSatKit that was developed to address the cFS deployment challenges and to serve as a cFS training platform for new users. It provides a fully functional out-of-the box software system that includes NASA's cFS, Ball Aerospaceâ€"TM"s command and control system COSMOS, and a NASA dynamic simulator called 42. The kit is freely available since all of the components have been released as open source. The kit runs on a Linux platform, includes 8 cFS applications, several kit-specific applications, and built in demos illustrating how to use key application features. It also includes the software necessary to port the cFS to a Raspberry Pi and instructions for configuring COSMOS to communicate with the target. All of the demos and test scripts can be rerun unchanged with the cFS running on the Raspberry Pi. The cFS uses a 3-tiered layered architecture including a platform abstraction layer, a Core Flight Executive (cFE) middle layer, and an application layer. Similar to smart phones, the cFS application layer is the key architectural feature for userâ€"TM"s to extend the FSW functionality to meet their mission-specific requirements. The platform abstraction layer and the cFE layers go a step further than smart phones by providing a platform-agnostic Application Programmer Interface (API) that allows applications to run unchanged on different platforms. OpenSatKit can serve two significant architectural roles that will further help the adoption of the cFS and help create a community of users that can share assets. First, the kit is being enhanced to automate the integration of applications with the goal of creating a virtual cFS 'App Store'. Second, a platform certification test suite can be developed that would allow users to verify the port of the cFS to a new platform. This paper will describe the current state of these efforts and future plans.
Document ID
20180001738
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
McComas, David
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
March 7, 2018
Publication Date
March 3, 2018
Subject Category
Computer Programming And Software
Spacecraft Design, Testing And Performance
Report/Patent Number
GSFC-E-DAA-TN49054
Meeting Information
Meeting: IEEE Aerospace Conference
Location: Big Sky, MT
Country: United States
Start Date: March 3, 2018
End Date: March 10, 2018
Sponsors: American Inst. of Aeronautics and Astronautics, Prognostics and Health Management (PHM) Society, Institute of Electrical and Electronics Engineers
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available