NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Shrouded CMC Rotor Blades for High Pressure Turbine ApplicationsThe density of Ceramic Matrix Compos-ite(CMC) materials is approximately 1/3 the density of metals currently used for High Pressure Turbine(HPT) blades. A lower density, and consequently lower centrifugal stresses, increases the feasibility of shrouding HPT blades. Shrouding HPT blades improves aerodynamic eciency, especially for low aspect ratio turbine blades. This paper explores aerodynamic and structural issues associated with shrouding HPT rotor blades. Detailed Navier-Stokes analysis of a rotor blade showed that shrouding improved blade row aerodynamic eciency by 1.3%, when the clearance was 2% of the blade span. Recessed casings were used. Without a shroud the depth of the recess equaled the clearance. With a shroud the recess depth increased by the shroud thickness, which included a knife seal. There was good agreement between the predicted stage eciency for the unshrouded blades and the experimentally measured efficiency. Structural analysis showed a strong interaction between stresses in the shroud and peak stresses at the hub of the blade. A thin shroud of uniform thickness only moderately increased maximum blade stress, but there were very high stresses in the shroud itself. Increasing shroud thickness reduced stresses in the shroud, but increased blade stresses near the hub. A single knife seal added to the thin shroud noticeably decreased maximum shroud stress, without increasing maximum blade stress. Maximum stresses due to pressure loads and combined pressure and centrifugal loads were nearly the same as the maximum stresses for individual pressure or cen-trifugal loads. Stresses due to a 100K temperature
Document ID
20180006891
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Boyle, Robert J.
(N and R Engineering and Management Services Parma Heights, OH, United States)
Agricola, Lucas M.
(Ohio State Univ. Columbus, OH, United States)
Parikh, Ankur H.
(N and R Engineering and Management Services Parma Heights, OH, United States)
Ameri, Ali A.
(Ohio State Univ. Columbus, OH, United States)
Nagpal, Vinod K.
(N and R Engineering and Management Services Parma Heights, OH, United States)
Date Acquired
October 25, 2018
Publication Date
June 11, 2018
Subject Category
Aircraft Design, Testing And Performance
Aerodynamics
Report/Patent Number
GRC-E-DAA-TN57524
Report Number: GRC-E-DAA-TN57524
Meeting Information
Meeting: ASME Turbo Expo
Location: Oslo
Country: Norway
Start Date: June 11, 2018
End Date: June 15, 2018
Sponsors: American Society of Mechanical Engineers
Funding Number(s)
CONTRACT_GRANT: NNX16CC31P
WBS: WBS 664817.02.03.02.01
Distribution Limits
Public
Copyright
Public Use Permitted.
Keywords
Ceramic Matrix Composite
No Preview Available