NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A Component-Level Model of Automatic Dependent Surveillance - Broadcast (ADS-B)Automatic Dependent Surveillance – Broadcast (ADS-B) is being employed in numerous peer-to-peer initiatives attempting to expand the capacity of the National Airspace System (NAS) or enable mixed operations of manned and unmanned vehicles. Safety assessments of these initiatives rely, in part, on modeling the accuracy of ADS-B in reporting the position and direction of an ownship and surrounding traffic. Frequently, these initiatives utilize a position uncertainty model that applies a reported ADS-B estimation position uncertainty (EPU) value to a Rayleigh distribution and uses a Gauss-Markov random walk to add error to the ADS-B output of a vehicle. This model of ADS-B state error is easy to implement and apply to numerous problems. However, it has a couple of draw-backs. First, the ADS-B state errors are equally probable in all directions. This is a good assumption in situations where aircraft maneuvering is not constrained. However, in situations where the aircraft maneuvering is constrained such as landing, the error distribution is likely to exhibit directionality and the non-directional model may skew results especially when assessing very low probabilities (e.g., 10(exp -9)) of catastrophic encounters. Second, the model does not account for processing latency in the receiving aircraft. NASA Langley Research Center (LaRC) recently examined the feasibility of decreasing the spacing of aircraft on parallel approaches to runways separated by as little as 700 feet. For Monte-Carlo analysis using a high-fidelity simulation of a large transport, LaRC started with a Gauss-Markov model of ADS-B error but then developed a component level model of ADS-B error to increase the fidelity of results.
Document ID
20190000876
Acquisition Source
Langley Research Center
Document Type
Conference Paper
Authors
Madden, Michael M.
(NASA Langley Research Center Hampton, VA, United States)
Date Acquired
February 21, 2019
Publication Date
June 25, 2018
Subject Category
Systems Analysis And Operations Research
Report/Patent Number
NF1676L-28481
Meeting Information
Meeting: AIAA AVIATION Forum
Location: Atlanta, GA
Country: United States
Start Date: June 25, 2018
End Date: June 29, 2018
Sponsors: American Institute of Aeronautics and Astronautics (AIAA)
Funding Number(s)
WBS: WBS 160961.01.02.01
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available