NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Three Stage Cool Flame Droplet Burning Behavior of n-Alkane Droplets at Elevated Pressure Conditions: Hot, Warm and Cool FlameTransient, isolated n-alkane droplet combustion is simulated at elevated pressure for helium-diluent substituted-air mixtures. We report the presence of unique quasi-steady, three-stage burning behavior of large sphero-symmetric n-alkane droplets at these elevated pressures and helium substituted ambient fractions. Upon initiation of reaction, hot-flame diffusive burning of large droplets is initiated that radiatively extinguishes to establish cool flame burning conditions in nitrogen/oxygen “air” at atmospheric and elevated pressures. However, at elevated pressure and moderate helium substitution for nitrogen ( X He > 20%), the initiated cool flame burning proceeds through two distinct, quasi-steady-state, cool flame burning conditions. The classical “Hot flame ” ( ∼1500 K) radiatively extinguishes into a “Warm flame ” burning mode at a moderate maximum reaction zone temperature ( ∼ 970 K), followed by a transition to a lower temperature ( ∼765 K), quasi-steady “Cool flame ” burning condition. The reaction zone (“flame”) temperatures are associated with distinctly different yields in intermediate reaction products within the reaction zones and surrounding near-field, and the flame-standoff ratios characterizing each burning mode progressively decrease. The presence of all three stages first appears with helium substitution near 20%, and the duration of each stage is observed to be strongly dependent on helium substitutions level between 20–60%. For helium substitution greater than 60%, the hot flame extinction is followed by only the lower temperature cool flame burning mode. In addition to the strong coupling between the diffusive loss of both energy and species and the slowly evolving degenerate branching in the low and negative temperature coefficient (NTC) kinetic regimes, the competition between the low-temperature chain branching and intermediate-temperature chain termination reactions control the “Warm” and “Cool ” flame quasi-steady conditions and transitioning dynamics.
Document ID
20190002838
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Farouk, T. I.
(University of South Carolina Columbia, SC, United States)
Dietrich, D.
(NASA Glenn Research Center Cleveland, OH, United States)
Dryer, F. L.
(University of South Carolina Columbia, SC, United States)
Date Acquired
April 29, 2019
Publication Date
July 29, 2018
Subject Category
Propellants And Fuels
Report/Patent Number
GRC-E-DAA-TN55306
Meeting Information
Meeting: International Symposium on Combustion
Location: Dublin
Country: Ireland
Start Date: July 29, 2018
End Date: August 3, 2018
Sponsors: Combustion Inst.
Funding Number(s)
CONTRACT_GRANT: NNX14AG46A
WBS: 904211.04.02.20.20
Distribution Limits
Public
Copyright
Public Use Permitted.
Technical Review
Single Expert
Keywords
Droplet Combustion
Cool Flame
Microgravity
No Preview Available