NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Correlation of Full-Scale Isolated Proprotor Performance and LoadsA full-scale isolated proprotor test is currently being conducted in the USAF National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel at NASA Ames. The test article is a 3-bladed research rotor derived from the right-hand rotor of the AW609; this rotor was manufactured by Bell Helicopter under contract to NASA. In this paper, this research rotor is referred to as "699". The test, nearly completed, is an integral part of the initial checkout test of the newly developed Tiltrotor Test Rig (TTR), whose purpose is to test advanced, full-scale proprotors in the NFAC. Figure 1 shows the TTR/699 installed in the 40- by 80-Foot test section. The TTR rotor axis is horizontal and the rig rotates in yaw on the wind tunnel turntable for conversion (transition) and helicopter mode testing. To date, a substantial amount of wind tunnel test data has already been acquired. The completed operational conditions include hover, airplane mode (cruise, wind tunnel airspeed V=61 to 267 knots), and the helicopter and conversion conditions (with a comprehensive sweep of the TTR yaw angle ranging, to date, from 90-deg yaw helicopter mode to 30-deg yaw conversion mode, at varying airspeeds). This 699 proprotor performance and loads correlation study uses these newly acquired wind tunnel test data. This paper represents the third analytical study, coming after two earlier analytical studies on the TTR/699; that is, a 2018 paper on pre-test predictions of 699 performance and loads, Ref. 1, and an upcoming January 2019 paper on aeroelastic stability analysis of the TTR/699 installed in the 40- by 80-Foot Wind Tunnel, Ref. 2. Reference 8 will present an overview of the entire TTR/699 test program. For completeness, Ref. 3 addresses the development and initial testing of the TTR. Background information on the TTR effort at NASA Ames can be found at the Aeromechanics website: https://rotorcraft.arc.nasa.gov/Research/Facilities/ttr.html. To the authors' knowledge, the full-scale results presented in this paper are the first of their kind. A literature survey brought up several existing correlation studies, but these were either based on small-scale test data (for example, the studies performed by the University of Maryland) or full-scale aircraft flight test data (for example, flight tests conducted by Bell Helicopter). Separately, the 2009 NASA study involving the JVX rotor is relevant (see Ref.4). The JVX is closely similar to the 699 in size and aerodynamics, and is accordingly a good reference for performance calculations. In Ref. 1 (as mentioned above), pre-test reality checks of the current analytical model were made by comparing JVX and 699 predictions in hover and forward flight (airplane mode).
Document ID
20190025112
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
Kottapalli, Sesi B.
(NASA Ames Research Center Moffett Field, CA, United States)
Acree, Cecil W.
(NASA Ames Research Center Moffett Field, CA, United States)
Date Acquired
May 15, 2019
Publication Date
May 13, 2019
Subject Category
Aerodynamics
Report/Patent Number
ARC-E-DAA-TN61869
Meeting Information
Meeting: Vertical Flight Society''s Annual Forum and Technology Display
Location: Philadelphia, PA
Country: United States
Start Date: May 13, 2019
End Date: May 16, 2019
Sponsors: Vertical Flight Society
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Keywords
Isolated Proprotor Performance
Correlation of Full-Scale
Loads
No Preview Available