NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Assessment of Terra MODIS Thermal Emissive Band Calibration Using Cold Targets and Measurements in Lunar Roll EventsTerra MODIS has provided continuous global observations for science research and applications for more than 18 years. The MODIS Thermal emissive bands (TEB) radiometric calibration uses a quadratic function for instrument response. The calibration coefficients are updated using the response of an on-board blackbody (BB) in quarterly warm-up and cool-down (WUCD) events. As instrument degradation and electronic crosstalk of long-wave infrared (LWIR) bands 27 to 30 developed substantial issues, accurate calibration is crucial for a high-quality L1B product. The on-board BB WUCD temperature ranges from 270 K to 315 K and the derived nonlinear response has a relatively large uncertainty for the offset, especially for these LWIR bands, which affects the measurements of low brightness temperature (BT) scenes. In this study, the TEB radiometric calibration impact on the L1B product is assessed using selected cold targets and the measurements during regular lunar rolls. The cold targets include Antarctic Dome Concordia (Dome-C) and deep convective clouds (DCC) for the calibration assessment, focusing on bands 27 to 30. Dome-C area is covered with uniformly-distributed permanent snow, and the atmospheric effect is small and relatively constant. Usually the DCC is treated as an invariant earth target to evaluate the reflective solar band calibration. The DCC can also be treated as a stable target to assess the performance of TEB calibration. During a scheduled lunar observation event with a spacecraft roll maneuver to view the moon through the space view port, the instrument cavity provides a stable reference for calibration assessment. The long-term trending of BT measurements and the relative difference between scan mirror sides and detectors are used for the assessment of the calibration consistency and stability. The comparison of L1B products over the selected targets before and after the calibration coefficients update can be used to assess the impact of a calibration look-up table (LUT) update. This assessment is beneficial for future calibration algorithm and LUT update procedure improvements for enhancing the L1B product quality.
Document ID
20190029174
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
External Source(s)
Authors
Chang, Tiejun
(Science Systems and Applications, Inc. (SSAI) Lanham, MD, United States)
Xiong, Xiaoxiong
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Shrestha, Ashish
(Science Systems and Applications, Inc. (SSAI) Lanham, MD, United States)
Wu, Aisheng
(Science Systems and Applications, Inc. (SSAI) Lanham, MD, United States)
Chen, Na
(Science Systems and Applications, Inc. (SSAI) Lanham, MD, United States)
Date Acquired
August 19, 2019
Publication Date
September 25, 2018
Subject Category
Earth Resources And Remote Sensing
Report/Patent Number
GSFC-E-DAA-TN71365
Meeting Information
Meeting: SPIE Remote Sensing
Location: Berlin
Country: Germany
Start Date: September 10, 2018
End Date: September 13, 2018
Sponsors: International Society for Optical Engineering
Funding Number(s)
CONTRACT_GRANT: NNG15HQ01C
Distribution Limits
Public
Copyright
Use by or on behalf of the US Gov. Permitted.
Technical Review
NASA Peer Committee
No Preview Available