NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A variational method for finite element stress recovery: Applications in one-dimensionIt is well-known that stresses (and strains) calculated by a displacement-based finite element analysis are generally not as accurate as the displacements. In addition, the calculated stress field is typically discontinuous at element interfaces. Because the stresses are typically of more interest than the displacements, several procedures have been proposed to obtain a smooth stress field, given the finite element stresses, and to improve the accuracy. Hinton and Irons introduced global least squares smoothing of discrete data defined on a plane using a finite element formulation. Tessler and co-workers recently developed a conceptually similar formulation for smoothing of two-dimensional data based on a discrete least square approximation with a penalty constraint. The penalty constraint results in a stress field which is C(exp 1)-continuous, a result not previously obtained. The approach requires additional, 'smoothing' finite element analysis and for their two-dimensional application, they used a conforming C(exp 0)-continuous triangular finite element based on a conforming plate element. This paper presents the results of a detailed investigation into the application of Tessler's smoothing procedure to the smoothing of finite element stresses from one-dimensional problems. Although the one-dimensional formulation has some practical applicability, such as in truss, beam, axisymmetric mechanics, and one-dimensional heat conduction, the primary motivation for developing the one-dimensional smoothing case is to explore the characteristics of the general smoothing strategy. In particular, it is used to describe the behavior of the method and to explore the suitability of criteria proposed for the smoothing analysis. Prior to presenting numerical results, the variational formulation of the smoothing strategy is presented and a criterion for the smoothing analysis is described.
Document ID
19930007596
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Riggs, H. Ronald
(Hawaii Univ. Manoa, HI, United States)
Date Acquired
September 6, 2013
Publication Date
September 1, 1992
Publication Information
Publication: Hampton Univ., NASA(American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1992 p 164-168 (SEE N93-16760 05-80)
Subject Category
Structural Mechanics
Accession Number
93N16785
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available