NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Supersonic flow and shock formation in turbine tip gapsShock formation due to overexpansion of supersonic flow at the inlet to the tip clearance gap of a turbomachine has been studied. As the flow enters the tip gap, it accelerates around the blade pressure-side corner creating a region of minimum static pressure. The 'free streamline' separates from the wall at the corner; and, for Mach numbers greater than about 1.3, it curves back to intersect the blade tip. At this point, the freestream flow is abruptly turned parallel to the surface, giving rise to an oblique shock. The results are consistent with compressible sharp-edged orifice flow calculations found in the literature and with the theory of oblique shock wave formation in supersonic flow over a wedge. For freestream Mach numbers of 1.4 to 1.8, wave angles are 43 to 54 deg, and turning angles are 9 to 20 deg; as the Mach number increases, the angle of turn also increases. It appears that in a turbine, after separating from the inlet corner, the flow reattaches on the blade tip and an oblique shock is formed at 0.4-1.4 tip gap heights into the clearance gap. The resulting shock-boundary layer interaction may contribute to further enhancement of already high heat transfer to the blade tip in this region. This in turn could lead to higher blade temperatures and adversely affect blade life and turbine efficiency.
Document ID
19950017009
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Moore, John
(Virginia Polytechnic Inst. and State Univ. Blacksburg, VA, United States)
Date Acquired
September 6, 2013
Publication Date
July 1, 1993
Publication Information
Publication: NASA. Marshall Space Flight Center, Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
95N23429
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available