NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Nonlinear Dynamics and Nucleation Kinetics in Near-Critical LiquidsThe objective of our study is to model the nonlinear behavior of a near-critical liquid following a rapid change of the temperature and/or other thermodynamic parameters (pressure, external electric or gravitational field). The thermodynamic critical point is manifested by large, strongly correlated fluctuations of the order parameter (particle density in liquid-gas systems, concentration in binary solutions) in the critical range of scales. The largest critical length scale is the correlation radius r(sub c). According to the scaling theory, r(sub c) increases as r(sub c) = r(sub 0)epsilon(exp -alpha) when the nondimensional distance epsilon = (T - T(sub c))/T(sub c) to the critical point decreases. The normal gravity alters the nature of correlated long-range fluctuations when one reaches epsilon approximately equal to 10(exp -5), and correspondingly the relaxation time, tau(r(sub c)), is approximately equal to 10(exp -3) seconds; this time is short when compared to the typical experimental time. Close to the critical point, a rapid, relatively small temperature change may perturb the thermodynamic equilibrium on many scales. The critical fluctuations have a hierarchical structure, and the relaxation involves many length and time scales. Above the critical point, in the one-phase region, we consider the relaxation of the liquid following a sudden temperature change that simultaneously violates the equilibrium on many scales. Below T(sub c), a non-equilibrium state may include a distribution of small scale phase droplets; we consider the relaxation of such a droplet following a temperature change that has made the phase of the matrix stable.
Document ID
19970000372
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Patashinski, Alexander Z.
(Northwestern Univ. Evanston, IL United States)
Ratner, Mark A.
(Northwestern Univ. Evanston, IL United States)
Pines, Vladimir
(Case Western Reserve Univ. Cleveland, OH United States)
Date Acquired
August 17, 2013
Publication Date
September 1, 1996
Publication Information
Publication: Third Microgravity Fluid Physics Conference
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
97N10339
Funding Number(s)
CONTRACT_GRANT: NAG3-1617
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available