NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Free-Mass and Interface Configurations of Hammering MechanismsA series of free-mass designs for the ultrasonic/ sonic driller/corer (USDC) has been developed to maximize the transfer of energy from the piezoelectric transducer through the horn to the bit, as well as to minimize potential jamming. A systematic development was made producing novel designs of free-mass configurations where the impact force is spread across a minimal area maximizing the impact on the bit. The designed free masses were made to operate at high temperatures (500 C) as on Venus, and they can be made to operate at extremely low temperature, too. In normal operation, the free mass bounces between the horn and the bit, impacting both repeatedly. The impact stress profile, maximum stress, contact time duration, and the required yielding stress for the materials of the free mass, bit, and horn are all affected by the contact area. A larger contact area results in lower stress in the contact region, and avoids yielding of the materials. However, before the excitation voltage is applied to the transducer, the horn, free mass, and the bit are pressed together. Larger contact area results in a stronger coupling of the bit to the horn transducer, which greatly changes the vibration characteristics of the transducer, and makes the USDC difficult to start. To obtain optimum performance, a catalog of free-mass designs is required, allowing maximum flexibility during trade-off for these conflicting contact area requirements. For this purpose, seven different designs were conceived: point contacts, circular contacts, point/circular contacts, line contacts, ring contacts, line/ring contacts, and dashed line contacts. Besides point/circular and line/ring contacts, the free mass can be designed as any of the above shapes. Depending on the ratio of the diameter to the height, and the free-mass retention method used (the cup or rod), the free mass can be configured with one or more sliding surfaces on the outside or inside diameter surface or both. Matching horn tips and free mass may also offer some utility in maximizing the stress pulse.
Document ID
20120009222
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Bao, Xiaoqi
(California Inst. of Tech. Pasadena, CA, United States)
Sherrit, Stewart
(California Inst. of Tech. Pasadena, CA, United States)
Badescu, Mircea
(California Inst. of Tech. Pasadena, CA, United States)
Bar-Cohen, Yoseph
(California Inst. of Tech. Pasadena, CA, United States)
Atkins, Steve
(California Inst. of Tech. Pasadena, CA, United States)
Ostlund, Patrick N.
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 25, 2013
Publication Date
May 1, 2012
Publication Information
Publication: NASA Tech Briefs, May 2012
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-47780
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available