NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Distributed Prognostics and Health Management with a Wireless Network ArchitectureA heterogeneous set of system components monitored by a varied suite of sensors and a particle-filtering (PF) framework, with the power and the flexibility to adapt to the different diagnostic and prognostic needs, has been developed. Both the diagnostic and prognostic tasks are formulated as a particle-filtering problem in order to explicitly represent and manage uncertainties in state estimation and remaining life estimation. Current state-of-the-art prognostic health management (PHM) systems are mostly centralized in nature, where all the processing is reliant on a single processor. This can lead to a loss in functionality in case of a crash of the central processor or monitor. Furthermore, with increases in the volume of sensor data as well as the complexity of algorithms, traditional centralized systems become for a number of reasons somewhat ungainly for successful deployment, and efficient distributed architectures can be more beneficial. The distributed health management architecture is comprised of a network of smart sensor devices. These devices monitor the health of various subsystems or modules. They perform diagnostics operations and trigger prognostics operations based on user-defined thresholds and rules. The sensor devices, called computing elements (CEs), consist of a sensor, or set of sensors, and a communication device (i.e., a wireless transceiver beside an embedded processing element). The CE runs in either a diagnostic or prognostic operating mode. The diagnostic mode is the default mode where a CE monitors a given subsystem or component through a low-weight diagnostic algorithm. If a CE detects a critical condition during monitoring, it raises a flag. Depending on availability of resources, a networked local cluster of CEs is formed that then carries out prognostics and fault mitigation by efficient distribution of the tasks. It should be noted that the CEs are expected not to suspend their previous tasks in the prognostic mode. When the prognostics task is over, and after appropriate actions have been taken, all CEs return to their original default configuration. Wireless technology-based implementation would ensure more flexibility in terms of sensor placement. It would also allow more sensors to be deployed because the overhead related to weights of wired systems is not present. Distributed architectures are furthermore generally robust with regard to recovery from node failures.
Document ID
20130014440
Acquisition Source
Ames Research Center
Document Type
Other - NASA Tech Brief
Authors
Goebel, Kai
(NASA Ames Research Center Moffett Field, CA, United States)
Saha, Sankalita
(Mission Critical Technologies, Inc. Moffett Field, CA, United States)
Sha, Bhaskar
(Mission Critical Technologies, Inc. Moffett Field, CA, United States)
Date Acquired
August 27, 2013
Publication Date
August 1, 2013
Publication Information
Publication: NASA Tech Briefs, August 2013
Subject Category
Man/System Technology And Life Support
Report/Patent Number
ARC-16450-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available